Prime Number Theorem And ...

7 Primary explicit estimates

7.1 Definitions

In this section we define the basic types of primary estimates we will work with in the project.

Key references:

FKS1: Fiori–Kadiri–Swidninsky arXiv:2204.02588

FKS2: Fiori–Kadiri–Swidninsky arXiv:2206.12557

Definition 34 Equation (2) of FKS2
#

\(E_ψ(x) = |ψ(x) - x| / x\)

Definition 35 Definition 1, FKS2
#

We say that \(E_ψ\) satisfies a classical bound with parameters \(A, B, C, R, x_0\) if for all \(x \geq x_0\) we have

\[ E_ψ(x) \leq A \left(\frac{\log x}{R}\right)^B \exp \left(-C \left(\frac{\log x}{R}\right)^{1/2}\right). \]
Definition 36 Section 1.1, FKS2
#

We say that one has a classical zero-free region with parameter \(R\) if \(zeta(s)\) has no zeroes in the region \(Re(s) \geq 1 - 1 / R * \log |\Im s|\) for \(\Im (s) {\gt} 3\).

7.2 The estimates of Fiori, Kadiri, and Swidinsky

In this section we establish the primary results of Fiori, Kadiri, and Swidinsky.

7.3 Summary of results

In this section we summarize the primary results known in the literature, and (if their proof has already been formalized) provide a proof.

Key references:

FKS1: Fiori–Kadiri–Swidninsky arXiv:2204.02588

FKS2: Fiori–Kadiri–Swidninsky arXiv:2206.12557

MT: M. J. Mossinghoff and T. S. Trudgian, Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, J. Number Theory. 157 (2015), 329–349.

MTY: M. J. Mossinghoff, T. S. Trudgian, and A. Yang, Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, arXiv:2212.06867.

Theorem 49 MT Theorem 1
#

One has a classical zero-free region with \(R = 5.5666305\).

Theorem 50 MTY
#

One has a classical zero-free region with \(R = 5.558691\).

Theorem 51 FKS1 Corollary 1.3
#

For all x > 2 we have \(E_ψ(x) \leq 121.096 (\log x/R)^{3/2} \exp (-2 \sqrt{\log x/R})\) with \(R = 5.5666305\).

Theorem 52 FKS1 Corollary 1.4
#

For all x > 2 we have \(E_ψ(x) \leq 9.22022(\log x)^{3/2} \exp (-0.8476836 \sqrt{\log x})\).

Proof

TODO.