Prime Number Theorem And ...

4 Third Approach

4.1 Strong PNT

This upstreamed from https://github.com/math-inc/strongpnt/tree/main

Theorem 24 BorelCaratheodory
#

Let \(R,\, M{\gt}0\). Let \(f\) be analytic on \(|z|\leq R\) such that \(f(0)=0\) and suppose \(\mathfrak {R}f(z)\leq M\) for all \(|z|\leq R\). Then for any \(0 {\lt} r {\lt} R\),

\[ \sup _{|z|\leq r}|f(z)|\leq \frac{2Mr}{R-r}. \]
Proof

Let

\[ f_M(z)=\frac{f(z)/z}{2M-f(z)}. \]

Note that \(2M-f(z)\neq 0\) because \(\mathfrak {R}(2M-f(z))=2M-\mathfrak {R}f(z)\geq M{\gt}0\). Additionally, since \(f(z)\) has a zero at \(0\), we know that \(f(z)/z\) is analytic on \(|z|\leq R\). Likewise, \(f_M(z)\) is analytic on \(|z|\leq R\).

Now note that \(|f(z)|\leq |2M-f(z)|\) since \(\mathfrak {R}f(z)\leq M\). Thus we have that

\[ |f_M(z)|=\frac{|f(z)|/|z|}{|2M-f(z)|}\leq \frac{1}{|z|}. \]

Now by the maximum modulus principle, we know the maximum of \(|f_M|\) must occur on the boundary where \(|z|=R\). Thus, \(|f_M(z)|\leq 1/R\) for all \(|z|\leq R\). So for \(|z|=r\) we have

\[ |f_M(z)|=\frac{|f(z)|/r}{|2M-f(z)|}\leq \frac{1}{R}\implies R\, |f(z)|\leq r\, |2M-f(z)|\leq 2Mr+r\, |f(z)|. \]

Which by algebraic manipulation gives

\[ |f(z)|\leq \frac{2Mr}{R-r}. \]

Once more, by the maximum modulus principle, we know the maximum of \(|f|\) must occur on the boundary where \(|z|=r\). Thus, the desired result immediately follows

Lemma 99 DerivativeBound
#

Let \(R,\, M{\gt}0\) and \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z|\leq R\) such that \(f(0)=0\) and suppose \(\mathfrak {R}f(z)\leq M\) for all \(|z|\leq R\). Then we have that

\[ |f'(z)|\leq \frac{2M(r')^2}{(R-r')(r'-r)^2} \]

for all \(|z|\leq r\).

Proof

By Cauchy’s integral formula we know that

\[ f'(z)=\frac{1}{2\pi i}\oint _{|w|=r'}\frac{f(w)}{(w-z)^2}\, dw=\frac{1}{2\pi }\int _0^{2\pi }\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\, dt. \]

Thus,

\begin{equation} \label{pickupPoint1} |f'(z)|=\left|\frac{1}{2\pi }\int _0^{2\pi }\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\, dt\right|\leq \frac{1}{2\pi }\int _0^{2\pi }\left|\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\right|\, dt. \end{equation}
1

Now applying Theorem 24, and noting that \(r'-r\leq |r'e^{it}-z|\), we have that

\[ \left|\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\right|\leq \frac{2M(r')^2}{(R-r')(r'-r)^2}. \]

Substituting this into Equation (1) and evaluating the integral completes the proof.

Theorem 25 BorelCaratheodoryDeriv
#

Let \(R,\, M{\gt}0\). Let \(f\) be analytic on \(|z|\leq R\) such that \(f(0)=0\) and suppose \(\mathfrak {R}f(z)\leq M\) for all \(|z|\leq R\). Then for any \(0 {\lt} r {\lt} R\),

\[ |f'(z)|\leq \frac{16MR^2}{(R-r)^3} \]

for all \(|z|\leq r\).

Proof

Using Lemma 99 with \(r'=(R+r)/2\), and noting that \(r {\lt} R\), we have that

\[ |f'(z)|\leq \frac{4M(R+r)^2}{(R-r)^3}\leq \frac{16MR^2}{(R-r)^3}. \]
Lemma 100 LogOfAnalyticFunction
#

Let \(0 {\lt} r {\lt} R{\lt}1\). Let \(B:\overline{\mathbb {D}_R}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_R}\) with \(B(z)\neq 0\) for all \(z\in \overline{\mathbb {D}_R}\). Then there exists \(J_B:\overline{\mathbb {D}_r}\to \mathbb {C}\) that is analytic on neighborhoods of points in \(\overline{\mathbb {D}_r}\) such that

  • \(J_B(0)=0\)

  • \(J_B'(z)=B'(z)/B(z)\)

  • \(\log |B(z)|-\log |B(0)|=\mathfrak {R}J_B(z)\)

for all \(z\in \overline{\mathbb {D}_r}\).

Proof

We let \(J_B(z)=\mathrm{Log}\, B(z)-\mathrm{Log}\, B(0)\). Then clearly, \(J_B(0)=0\) and \(J_B'(z)=B'(z)/B(z)\). Showing the third property is a little more difficult, but by no standards terrible. Exponentiating \(J_B(z)\) we have that

\[ \exp (J_B(z))=\exp (\mathrm{Log}\, B(z)-\mathrm{Log}\, B(0))=\frac{B(z)}{B(0)}\implies B(z)=B(0)\exp (J_B(z)). \]

Now taking the modulus

\[ |B(z)|=|B(0)|\cdot |\exp (J_B(z))|=|B(0)|\cdot \exp (\mathfrak {R}J_B(z)). \]

Taking the real logarithm of both sides and rearranging gives the third point.

Definition 20 SetOfZeros
#

Let \(R{\gt}0\) and \(f:\overline{\mathbb {D}_R}\to \mathbb {C}\). Define the set of zeros \(\mathcal{K}_f(R)=\{ \rho \in \mathbb {C}:|\rho |\leq R,\, f(\rho )=0\} \).

Definition 21 ZeroOrder
#

Let \(0 {\lt} R{\lt}1\) and \(f:\mathbb {C}\to \mathbb {C}\) be analtyic on neighborhoods of points in \(\overline{\mathbb {D}_1}\). For any zero \(\rho \in \mathcal{K}_f(R)\), we define \(m_f(\rho )\) as the order of the zero \(\rho \) w.r.t \(f\).

Lemma 101 ZeroFactorization
#

Let \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)\neq 0\). For all \(\rho \in \mathcal{K}_f(1)\) there exists \(h_\rho (z)\) that is analytic at \(\rho \), \(h_\rho (\rho )\neq 0\), and \(f(z)=(z-\rho )^{m_f(\rho )}\, h_\rho (z)\).

Proof

Since \(f\) is analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) we know that there exists a series expansion about \(\rho \):

\[ f(z)=\sum _{0\leq n}a_n\, (z-\rho )^n. \]

Now if we let \(m\) be the smallest number such that \(a_m\neq 0\), then

\[ f(z)=\sum _{0\leq n}a_n\, (z-\rho )^n=\sum _{m\leq n}a_n\, (z-\rho )^n=(z-\rho )^m\sum _{m\leq n}a_n\, (z-\rho )^{n-m}=(z-\rho )^m\, h_\rho (z). \]

Trivially, \(h_\rho (z)\) is analytic at \(\rho \) (we have written down the series expansion); now note that

\[ h_\rho (\rho )=\sum _{m\leq n}a_n(\rho -\rho )^{n-m}=\sum _{m\leq n}a_n0^{n-m}=a_m\neq 0. \]
Definition 22 CFunction
#

Let \(0 {\lt} r {\lt} R{\lt}1\), and \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)\neq 0\). We define a function \(C_f:\overline{\mathbb {D}_R}\to \mathbb {C}\) as follows. This function is constructed by dividing \(f(z)\) by a polynomial whose roots are the zeros of \(f\) inside \(\overline{\mathbb {D}_r}\).

\[ C_f(z)=\begin{cases} \displaystyle \frac{f(z)}{\prod _{\rho \in \mathcal{K}_f(r)}(z-\rho )^{m_f(\rho )}}\qquad \text{for }z\not\in \mathcal{K}_f(r) \\ \displaystyle \frac{h_z(z)}{\prod _{\rho \in \mathcal{K}_f(r)\setminus \{ z\} }(z-\rho )^{m_f(\rho )}}\qquad \text{for }z\in \mathcal{K}_f(r) \end{cases} \]

where \(h_z(z)\) comes from Lemma 101.

Definition 23 BlaschkeB
#

Let \(0 {\lt} r {\lt} R{\lt}1\), and \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)\neq 0\). We define a function \(B_f:\overline{\mathbb {D}_R}\to \mathbb {C}\) as follows.

\[ B_f(z)=C_f(z)\prod _{\rho \in \mathcal{K}_f(r)}\left(R-\frac{z\overline{\rho }}{R}\right)^{m_f(\rho )} \]
Lemma 102 BlaschkeOfZero
#

Let \(0 {\lt} r {\lt} R{\lt}1\), and \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)\neq 0\). Then

\[ |B_f(0)|=|f(0)|\prod _{\rho \in \mathcal{K}_f(r)}\left(\frac{R}{|\rho |}\right)^{m_f(\rho )}. \]
Proof

Since \(f(0)\neq 0\), we know that \(0\not\in \mathcal{K}_f(r)\). Thus,

\[ C_f(0)=\frac{f(0)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)}(-\rho )^{m_f(\rho )}}. \]

Thus, substituting this into Definition 23,

\[ |B_f(0)|=|C_f(0)|\prod _{\rho \in \mathcal{K}_f(r)}R^{m_f(\rho )}=|f(0)|\prod _{\rho \in \mathcal{K}_f(r)}\left(\frac{R}{|\rho |}\right)^{m_f(\rho )}. \]
Lemma 103 DiskBound
#

Let \(B{\gt}1\) and \(0 {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(|f(z)|\leq B\) for \(|z|\leq R\), then \(|B_f(z)|\leq B\) for \(|z|\leq R\) also.

Proof

For \(|z|=R\), we know that \(z\not\in \mathcal{K}_f(r)\). Thus,

\[ C_f(z)=\frac{f(z)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)}(z-\rho )^{m_f(\rho )}}. \]

Thus, substituting this into Definition 23,

\[ |B_f(z)|=|f(z)|\prod _{\rho \in \mathcal{K}_f(r)}\left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|^{m_f(\rho )}. \]

But note that

\[ \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|=\frac{|R^2-z\overline{\rho }|/R}{|z-\rho |}=\frac{|z|\cdot |\overline{z-\rho }|/R}{|z-\rho |}=1. \]

So we have that \(|B_f(z)|=|f(z)|\leq B\) when \(|z|=R\). Now by the maximum modulus principle, we know that the maximum of \(|B_f|\) must occur on the boundary where \(|z|=R\). Thus \(|B_f(z)|\leq B\) for all \(|z|\leq R\).

Lemma 104 ZerosBound
#

Let \(B{\gt}1\) and \(0{\lt} r {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)=1\) and \(|f(z)|\leq B\) for \(|z|\leq R\), then

\[ \sum _{\rho \in \mathcal{K}_f(r)}m_f(\rho )\leq \frac{\log B}{\log (R/r)}. \]
Proof

Since \(f(0)=1\), we know that \(0\not\in \mathcal{K}_f(r)\). Thus,

\[ C_f(0)=\frac{f(0)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)}(-\rho )^{m_f(\rho )}}. \]

Thus, substituting this into Definition 23,

\[ (R/r)^{\sum _{\rho \in \mathcal{K}_f(r)}m_f(\rho )}=\prod _{\rho \in \mathcal{K}_f(r)}\left(\frac{R}{r}\right)^{m_f(\rho )}\leq \prod _{\rho \in \mathcal{K}_f(r)}\left(\frac{R}{|\rho |}\right)^{m_f(\rho )}=|B_f(0)|\leq B \]

whereby Lemma 103 we know that \(|B_f(z)|\leq B\) for all \(|z|\leq R\). Taking the logarithm of both sides and rearranging gives the desired result.

Definition 24 JBlaschke
#

Let \(B{\gt}1\) and \(0 {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)=1\), define \(L_f(z)=J_{B_f}(z)\) where \(J\) is from Lemma 100 and \(B_f\) is from Definition 23.

Lemma 105 BlaschkeNonZero
#

Let \(0 {\lt} r {\lt} R{\lt}1\) and \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\). Then \(B_f(z)\neq 0\) for all \(z\in \overline{\mathbb {D}_r}\).

Proof

Suppose that \(z\in \mathcal{K}_f(r)\). Then we have that

\[ C_f(z)=\frac{h_z(z)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)\setminus \{ z\} }(z-\rho )^{m_f(\rho )}}. \]

where \(h_z(z)\neq 0\) according to Lemma 101. Thus, substituting this into Definition 23,

\begin{equation} \label{pickupPoint2} |B_f(z)|=|h_z(z)|\cdot \left|R-\frac{|z|^2}{R}\right|^{m_f(z)}\prod _{\rho \in \mathcal{K}_f(r)\setminus \{ z\} }\left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|^{m_f(\rho )}. \end{equation}
4

Trivially, \(|h_z(z)|\neq 0\). Now note that

\[ \left|R-\frac{|z|^2}{R}\right|=0\implies |z|=R. \]

However, this is a contradiction because \(z\in \overline{\mathbb {D}_r}\) tells us that \(|z|\leq r {\lt} R\). Similarly, note that

\[ \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|=0\implies |z|=\frac{R^2}{|\overline{\rho }|}. \]

However, this is also a contradiction because \(\rho \in \mathcal{K}_f(r)\) tells us that \(R {\lt} R^2/|\overline{\rho }|=|z|\), but \(z\in \overline{\mathbb {D}_r}\) tells us that \(|z|\leq r {\lt} R\). So, we know that

\[ \left|R-\frac{|z|^2}{R}\right|\neq 0\qquad \text{and}\qquad \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|\neq 0\quad \text{for all}\quad \rho \in \mathcal{K}_f(r)\setminus \{ z\} . \]

Applying this to Equation (4) we have that \(|B_f(z)|\neq 0\). So, \(B_f(z)\neq 0\).

Now suppose that \(z\not\in \mathcal{K}_f(r)\). Then we have that

\[ C_f(z)=\frac{f(z)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)}(z-\rho )^{m_f(\rho )}}. \]

Thus, substituting this into Definition 23,

\begin{equation} \label{pickupPoint3} |B_f(z)|=|f(z)|\prod _{\rho \in \mathcal{K}_f(r)}\left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|^{m_f(\rho )}. \end{equation}
5

We know that \(|f(z)|\neq 0\) since \(z\not\in \mathcal{K}_f(r)\). Now note that

\[ \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|=0\implies |z|=\frac{R^2}{|\overline{\rho }|}. \]

However, this is a contradiction because \(\rho \in \mathcal{K}_f(r)\) tells us that \(R {\lt} R^2/|\overline{\rho }|=|z|\), but \(z\in \overline{\mathbb {D}_r}\) tells us that \(|z|\leq r {\lt} R\). So, we know that

\[ \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|\neq 0\quad \text{for all}\quad \rho \in \mathcal{K}_f(r). \]

Applying this to Equation (5) we have that \(|B_f(z)|\neq 0\). So, \(B_f(z)\neq 0\).

We have shown that \(B_f(z)\neq 0\) for both \(z\in \mathcal{K}_f(r)\) and \(z\not\in \mathcal{K}_f(r)\), so the result follows.

Lemma 106 JBlaschkeDerivBound
#

Let \(B{\gt}1\) and \(0 {\lt} r' {\lt} r {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)=1\) and \(|f(z)|\leq B\) for all \(|z|\leq R\), then for all \(|z|\leq r'\)

\[ |L_f'(z)|\leq \frac{16\log (B)\, r^2}{(r-r')^3} \]
Proof

By Lemma 103 we immediately know that \(|B_f(z)|\leq B\) for all \(|z|\leq R\). Now since \(L_f=J_{B_f}\) by Definition 24, by Lemma 100 we know that

\[ L_f(0)=0\qquad \text{and}\qquad \mathfrak {R}L_f(z)=\log |B_f(z)|-\log |B_f(0)|\leq \log |B_f(z)|\leq \log B \]

for all \(|z|\leq r\). So by Theorem 25, it follows that

\[ |L_f'(z)|\leq \frac{16\log (B)\, r^2}{(r-r')^3} \]

for all \(|z|\leq r'\).

Lemma 107 FinalBound
#

Let \(B{\gt}1\) and \(0 {\lt} r' {\lt} r {\lt} R' {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)=1\) and \(|f(z)|\leq B\) for all \(|z|\leq R\), then for all \(z\in \overline{\mathbb {D}_{R'}}\setminus \mathcal{K}_f(R')\) we have

\[ \left|\frac{f'}{f}(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }\right|\leq \left(\frac{16r^2}{(r-r')^3}+\frac{1}{(R^2/R'-R')\, \log (R/R')}\right)\log B. \]
Proof

Since \(z\in \overline{\mathbb {D}_{r'}}\setminus \mathcal{K}_f(R')\) we know that \(z\not\in \mathcal{K}_f(R')\); thus, by Definition 22 we know that

\[ C_f(z)=\frac{f(z)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(R')}(z-\rho )^{m_f(\rho )}}. \]

Substituting this into Definition 23 we have that

\[ B_f(z)=f(z)\prod _{\rho \in \mathcal{K}_f(R')}\left(\frac{R-z\overline{\rho }/R}{z-\rho }\right)^{m_f(\rho )}. \]

Taking the complex logarithm of both sides we have that

\[ \mathrm{Log}\, B_f(z)=\mathrm{Log}\, f(z)+\sum _{\rho \in \mathcal{K}_f(R')}m_f(\rho )\, \mathrm{Log}(R-z\overline{\rho }/R)-\sum _{\rho \in \mathcal{K}_f(R')}m_f(\rho )\, \mathrm{Log}(z-\rho ). \]

Taking the derivative of both sides we have that

\[ \frac{B_f'}{B_f}(z)=\frac{f'}{f}(z)+\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-R^2/\rho }-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }. \]

By Definition 24 and Lemma 100 we recall that

\[ L_f(z)=J_{B_f}(z)=\mathrm{Log}\, B_f(z)-\mathrm{Log}\, B_f(0). \]

Taking the derivative of both sides we have that \(L_f'(z)=(B_f'/B_f)(z)\). Thus,

\[ \frac{f'}{f}(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }=L_f'(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-R^2/\rho }. \]

Now since \(z\in \overline{\mathbb {D}_{R'}}\) and \(\rho \in \mathcal{K}_f(R')\), we know that \(R^2/R'-R'\leq |z-R^2/\rho |\). Thus by the triangle inequality we have

\[ \left|\frac{f'}{f}(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }\right|\leq |L_f'(z)|+\left(\frac{1}{R^2/R'-R'}\right)\sum _{\rho \in \mathcal{K}_f(R')}m_f(\rho ). \]

Now by Lemmas 104 and 106 we get our desired result with a little algebraic manipulation.

Lemma 108 ZetaFixedLowerBound
#

There exists \(a{\gt}0\) such that for all \(t\in \mathbb {R}\) one has

\[ |\zeta (3/2+it)|\geq a. \]
Proof

From the Euler product expansion of \(\zeta \), we have that for \(\mathfrak {R}s{\gt}1\)

\[ \zeta (s)=\prod _p\frac{1}{1-p^{-s}}. \]

Thus, we have that

\[ \frac{\zeta (2s)}{\zeta (s)}=\prod _p\frac{1-p^{-s}}{1-p^{-2s}}=\prod _p\frac{1}{1+p^{-s}}. \]

Now note that \(|1-p^{-(3/2+it)}|\leq 1+|p^{-(3/2+it)}|=1+p^{-3/2}\). Thus,

\[ |\zeta (3/2+it)|=\prod _p\frac{1}{|1-p^{-(3/2+it)}|}\geq \prod _p\frac{1}{1+p^{-3/2}}=\frac{\zeta (3)}{\zeta (3/2)} \]

for all \(t\in \mathbb {R}\), as desired.

Lemma 109 ZetaAltFormula
#

Let

\[ \zeta _0(s)=1+\frac{1}{s-1}-s\int _1^\infty \{ x\} \, x^{-s}\, \frac{dx}{x}. \]

We have that \(\zeta (s)=\zeta _0(s)\) for \(\sigma {\gt}1\).

Proof

Note that for \(\sigma {\gt}1\) we have

\[ \zeta (s)=\sum _{n=1}^\infty \frac{1}{n^s}=\sum _{n=1}^\infty \frac{n}{n^s}-\sum _{n=1}^\infty \frac{n-1}{n^s}=\sum _{n=1}^\infty \frac{n}{n^s}-\sum _{n=0}^\infty \frac{n}{(n+1)^s}=\sum _{n=1}^\infty \frac{n}{n^s}-\sum _{n=1}^\infty \frac{n}{(n+1)^s}. \]

Thus

\[ \zeta (s)=\sum _{n=1}^\infty n\, (n^{-s}-(n+1)^{-s}). \]

Now we note that

\[ s\int _n^{n+1}x^{-s}\, \frac{dx}{x}=s\left(-\frac{1}{s}\, x^{-s}\right)_n^{n+1}=n^{-s}-(n+1)^{-s}. \]

So, substituting this we have

\[ \zeta (s)=\sum _{n=1}^\infty n\, (n^{-s}-(n+1)^{-s})=s\sum _{n=1}^\infty n\int _n^{n+1}x^{-s}\, \frac{dx}{x}=s\int _1^\infty \lfloor x\rfloor \, x^{-s}\, \frac{dx}{x}. \]

But noting that \(\lfloor x\rfloor =x-\{ x\} \) we have that

\[ \zeta (s)=s\int _1^\infty \lfloor x\rfloor \, x^{-s}\, \frac{dx}{x}=s\int _1^\infty x^{-s}\, dx-s\int _1^\infty \{ x\} \, x^{-s}\, \frac{dx}{x}. \]

Evaluating the first integral completes the result.

Lemma 110 ZetaAltFormulaAnalytic
#

We have that \(\zeta _0(s)\) is analytic for all \(s\in S\) where \(S=\{ s\in \mathbb {C}:\mathfrak {R}s{\gt}0,\, s\neq 1\} \).

Proof

Note that we have

\[ \left|\int _1^\infty \{ x\} \, x^{-s}\, \frac{dx}{x}\right|\leq \int _1^\infty |\{ x\} \, x^{-s-1}|\, dx\leq \int _1^\infty x^{-\sigma -1}\, dx=\frac{1}{\sigma }. \]

So this integral converges uniformly on compact subsets of \(S\), which tells us that it is analytic on \(S\). So it immediately follows that \(\zeta _0(s)\) is analytic on \(S\) as well, since \(S\) avoids the pole at \(s=1\) coming from the \((s-1)^{-1}\) term.

Lemma 111 ZetaExtend
#

We have that

\[ \zeta (s)=1+\frac{1}{s-1}-s\int _1^\infty \{ x\} \, x^{-s}\, \frac{dx}{x} \]

for all \(s\in S\).

Proof

This is an immediate consequence of the identity theorem.

Lemma 112 GlobalBound
#

For all \(s\in \mathbb {C}\) with \(|s|\leq 1\) and \(t\in \mathbb {R}\) with \(|t|\geq 3\), we have that

\[ |\zeta (s+3/2+it)|\leq 7+2\, |t|. \]
Proof

For the sake of clearer proof writing let \(z=s+3/2+it\). Since \(|s|\leq 1\) we know that \(1/2\leq \mathfrak {R}z\); additionally, as \(|t|\geq 3\), we know \(z\in S\). Thus, from Lemma 111 we know that

\[ |\zeta (z)|\leq 1+\frac{1}{|z-1|}+|z|\cdot \left|\int _1^\infty \{ x\} \, x^{-z}\, \frac{dx}{x}\right| \]

by applying the triangle inequality. Now note that \(\abs {z-1}\geq 1\). Likewise,

\[ |z|\cdot \left|\int _1^\infty \{ x\} \, x^{-z}\, \frac{dx}{x}\right|\leq |z|\int _1^\infty |\{ x\} \, x^{-z-1}|\, dx\leq |z|\int _1^\infty x^{-\mathfrak {R}z-1}\, dx=\frac{|z|}{\mathfrak {R}z}\leq 2\, |z|. \]

Thus we have that,

\[ |\zeta (s+3/2+it)|=|\zeta (z)|\leq 1+1+2\, |z|=2+2\, |s+3/2+it|\leq 2+2\, |s|+3+2\, |it|\leq 7+2\, |t|. \]