Relation of morphism properties with limits #
The following predicates are introduces for morphism properties P:
IsStableUnderBaseChange:Pis stable under base change if in all pullback squares, the left map satisfiesPif the right map satisfies it.IsStableUnderCobaseChange:Pis stable under cobase change if in all pushout squares, the right map satisfiesPif the left map satisfies it.
We define P.universally for the class of morphisms which satisfy P after any base change.
We also introduce properties IsStableUnderProductsOfShape, IsStableUnderLimitsOfShape,
IsStableUnderFiniteProducts, and similar properties for colimits and coproducts.
Given a class of morphisms P, this is the class of pullbacks
of morphisms in P.
Equations
Instances For
Given a class of morphisms P, this is the class of pushouts
of morphisms in P.
Equations
Instances For
If P : MorphismProperty C is such that any object in C maps to the
target of some morphism in P, then P.pushouts contains the isomorphisms.
A morphism property is IsStableUnderBaseChange if the base change of such a morphism
still falls in the class.
- of_isPullback {X Y Y' S : C} {f : X ⟶ S} {g : Y ⟶ S} {f' : Y' ⟶ Y} {g' : Y' ⟶ X} (sq : IsPullback f' g' g f) (hg : P g) : P g'
Instances
A morphism property is IsStableUnderCobaseChange if the cobase change of such a morphism
still falls in the class.
Instances
Alternative constructor for IsStableUnderBaseChange.
An alternative constructor for IsStableUnderCobaseChange.
The class of morphisms in C that are limits of shape J of
natural transformations involving morphisms in W.
- mk {C : Type u} [Category.{v, u} C] {W : MorphismProperty C} {J : Type u_1} [Category.{u_2, u_1} J] (X₁ X₂ : Functor J C) (c₁ : Limits.Cone X₁) (c₂ : Limits.Cone X₂) : ∀ (x : Limits.IsLimit c₁) (h₂ : Limits.IsLimit c₂) (f : X₁ ⟶ X₂), W.functorCategory J f → W.limitsOfShape J (h₂.lift { pt := c₁.pt, π := CategoryStruct.comp c₁.π f })
Instances For
The property that a morphism property W is stable under limits
indexed by a category J.
- condition (X₁ X₂ : Functor J C) (c₁ : Limits.Cone X₁) (c₂ : Limits.Cone X₂) : ∀ (x : Limits.IsLimit c₁) (h₂ : Limits.IsLimit c₂) (f : X₁ ⟶ X₂), W.functorCategory J f → ∀ (φ : c₁.pt ⟶ c₂.pt) (hφ : ∀ (j : J), CategoryStruct.comp φ (c₂.π.app j) = CategoryStruct.comp (c₁.π.app j) (f.app j)), W φ
Instances
Alias of CategoryTheory.MorphismProperty.limMap.
The class of morphisms in C that are colimits of shape J of
natural transformations involving morphisms in W.
- mk {C : Type u} [Category.{v, u} C] {W : MorphismProperty C} {J : Type u_1} [Category.{u_2, u_1} J] (X₁ X₂ : Functor J C) (c₁ : Limits.Cocone X₁) (c₂ : Limits.Cocone X₂) (h₁ : Limits.IsColimit c₁) (h₂ : Limits.IsColimit c₂) (f : X₁ ⟶ X₂) : W.functorCategory J f → W.colimitsOfShape J (h₁.desc { pt := c₂.pt, ι := CategoryStruct.comp f c₂.ι })
Instances For
The property that a morphism property W is stable under colimits
indexed by a category J.
- condition (X₁ X₂ : Functor J C) (c₁ : Limits.Cocone X₁) (c₂ : Limits.Cocone X₂) (h₁ : Limits.IsColimit c₁) : ∀ (h₁✝ : Limits.IsColimit c₂) (f : X₁ ⟶ X₂), W.functorCategory J f → ∀ (φ : c₁.pt ⟶ c₂.pt) (hφ : ∀ (j : J), CategoryStruct.comp (c₁.ι.app j) φ = CategoryStruct.comp (f.app j) (c₂.ι.app j)), W φ
Instances
Alias of CategoryTheory.MorphismProperty.colimMap.
Alias of CategoryTheory.MorphismProperty.colimitsOfShape_le.
The condition that a property of morphisms is stable by filtered colimits.
- isStableUnderColimitsOfShape (J : Type w') [Category.{w, w'} J] [IsFiltered J] : W.IsStableUnderColimitsOfShape J
Instances
Given W : MorphismProperty C, this is class of morphisms that are
isomorphic to a coproduct of a family (indexed by some J : Type w) of maps in W.
Equations
- CategoryTheory.MorphismProperty.coproducts.{?u.10, ?u.9, ?u.8} W = ⨆ (J : Type ?u.10), W.colimitsOfShape (CategoryTheory.Discrete J)
Instances For
The property that a morphism property W is stable under products indexed by a type J.
Equations
Instances For
The property that a morphism property W is stable under coproducts indexed by a type J.
Equations
Instances For
The condition that a property of morphisms is stable by finite products.
Instances
The condition that a property of morphisms is stable by finite coproducts.
Instances
Alias of CategoryTheory.MorphismProperty.IsStableUnderFiniteProducts.isStableUnderProductsOfShape.
Alias of CategoryTheory.MorphismProperty.IsStableUnderFiniteCoproducts.isStableUnderCoproductsOfShape.
The condition that a property of morphisms is stable by coproducts.
- isStableUnderCoproductsOfShape (J : Type w) : W.IsStableUnderCoproductsOfShape J
Instances
For P : MorphismProperty C, P.diagonal is a morphism property that holds for f : X ⟶ Y
whenever P holds for X ⟶ Y xₓ Y.
Equations
- P.diagonal f = P (CategoryTheory.Limits.pullback.diagonal f)
Instances For
If P is multiplicative and stable under base change, having the of-postcomp property
w.r.t. Q is equivalent to Q implying P on the diagonal.
P.universally holds for a morphism f : X ⟶ Y iff P holds for all X ×[Y] Y' ⟶ Y'.
Equations
- P.universally f = ∀ ⦃X' Y' : C⦄ (i₁ : X' ⟶ X) (i₂ : Y' ⟶ Y) (f' : X' ⟶ Y'), CategoryTheory.IsPullback f' i₁ i₂ f → P f'
Instances For
P has pullbacks if for every f satisfying P, pullbacks of arbitrary morphisms along f
exist.
Instances
Alias of CategoryTheory.MorphismProperty.HasPullbacks.hasPullback.