Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.HasPullback

HasPullback #

HasPullback f g and pullback f g provides API for HasLimit and limit in the case of pullacks.

Main definitions #

  pullback f g ---pullback.snd f g---> Y
      |                                |
      |                                |
pullback.snd f g                       g
      |                                |
      v                                v
      X --------------f--------------> Z
      X --------------f--------------> Y
      |                                |
      g                          pushout.inr f g
      |                                |
      v                                v
      Z ---pushout.inl f g---> pushout f g

Main results & API #

(The dual results for pushouts are also available)

References #

@[reducible, inline]
abbrev CategoryTheory.Limits.HasPullback {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) :

HasPullback f g represents a particular choice of limiting cone for the pair of morphisms f : X ⟶ Z and g : Y ⟶ Z.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.HasPushout {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) :

HasPushout f g represents a particular choice of colimiting cocone for the pair of morphisms f : X ⟶ Y and g : X ⟶ Z.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pullback {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :
C

pullback f g computes the pullback of a pair of morphisms with the same target.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pullback.cone {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :

The cone associated to the pullback of f and g

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pushout {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :
C

pushout f g computes the pushout of a pair of morphisms with the same source.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pushout.cocone {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :

The cocone associated to the pullback of f and g

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pullback.fst {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :

The first projection of the pullback of f and g.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pullback.snd {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :

The second projection of the pullback of f and g.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pushout.inl {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :
Y pushout f g

The first inclusion into the pushout of f and g.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pushout.inr {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :
Z pushout f g

The second inclusion into the pushout of f and g.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pullback.lift {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] (h : W X) (k : W Y) (w : CategoryStruct.comp h f = CategoryStruct.comp k g) :

A pair of morphisms h : W ⟶ X and k : W ⟶ Y satisfying h ≫ f = k ≫ g induces a morphism pullback.lift : W ⟶ pullback f g.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pushout.desc {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] (h : Y W) (k : Z W) (w : CategoryStruct.comp f h = CategoryStruct.comp g k) :
pushout f g W

A pair of morphisms h : Y ⟶ W and k : Z ⟶ W satisfying f ≫ h = g ≫ k induces a morphism pushout.desc : pushout f g ⟶ W.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pullback.isLimit {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :

The cone associated to a pullback is a limit cone.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.pushout.isColimit {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :

The cocone associated to a pushout is a colimit cone.

Equations
@[simp]
theorem CategoryTheory.Limits.PullbackCone.fst_limit_cone {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasLimit (cospan f g)] :
@[simp]
theorem CategoryTheory.Limits.PullbackCone.snd_limit_cone {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasLimit (cospan f g)] :
theorem CategoryTheory.Limits.pullback.lift_fst {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] (h : W X) (k : W Y) (w : CategoryStruct.comp h f = CategoryStruct.comp k g) :
CategoryStruct.comp (lift h k w) (fst f g) = h
theorem CategoryTheory.Limits.pullback.lift_fst_assoc {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] (h : W X) (k : W Y) (w : CategoryStruct.comp h f = CategoryStruct.comp k g) {Z✝ : C} (h✝ : X Z✝) :
theorem CategoryTheory.Limits.pullback.lift_snd {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] (h : W X) (k : W Y) (w : CategoryStruct.comp h f = CategoryStruct.comp k g) :
CategoryStruct.comp (lift h k w) (snd f g) = k
theorem CategoryTheory.Limits.pullback.lift_snd_assoc {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] (h : W X) (k : W Y) (w : CategoryStruct.comp h f = CategoryStruct.comp k g) {Z✝ : C} (h✝ : Y Z✝) :
theorem CategoryTheory.Limits.pushout.inl_desc {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] (h : Y W) (k : Z W) (w : CategoryStruct.comp f h = CategoryStruct.comp g k) :
CategoryStruct.comp (inl f g) (desc h k w) = h
theorem CategoryTheory.Limits.pushout.inl_desc_assoc {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] (h : Y W) (k : Z W) (w : CategoryStruct.comp f h = CategoryStruct.comp g k) {Z✝ : C} (h✝ : W Z✝) :
theorem CategoryTheory.Limits.pushout.inr_desc {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] (h : Y W) (k : Z W) (w : CategoryStruct.comp f h = CategoryStruct.comp g k) :
CategoryStruct.comp (inr f g) (desc h k w) = k
theorem CategoryTheory.Limits.pushout.inr_desc_assoc {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] (h : Y W) (k : Z W) (w : CategoryStruct.comp f h = CategoryStruct.comp g k) {Z✝ : C} (h✝ : W Z✝) :
def CategoryTheory.Limits.pullback.lift' {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] (h : W X) (k : W Y) (w : CategoryStruct.comp h f = CategoryStruct.comp k g) :

A pair of morphisms h : W ⟶ X and k : W ⟶ Y satisfying h ≫ f = k ≫ g induces a morphism l : W ⟶ pullback f g such that l ≫ pullback.fst = h and l ≫ pullback.snd = k.

Equations
def CategoryTheory.Limits.pullback.desc' {C : Type u} [Category.{v, u} C] {W X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] (h : Y W) (k : Z W) (w : CategoryStruct.comp f h = CategoryStruct.comp g k) :

A pair of morphisms h : Y ⟶ W and k : Z ⟶ W satisfying f ≫ h = g ≫ k induces a morphism l : pushout f g ⟶ W such that pushout.inl _ _ ≫ l = h and pushout.inr _ _ ≫ l = k.

Equations
theorem CategoryTheory.Limits.pullback.condition {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] :
theorem CategoryTheory.Limits.pullback.condition_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] {Z✝ : C} (h : Z Z✝) :
theorem CategoryTheory.Limits.pushout.condition {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] :
theorem CategoryTheory.Limits.pushout.condition_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] {Z✝ : C} (h : pushout f g Z✝) :
theorem CategoryTheory.Limits.pullback.hom_ext {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] {W : C} {k l : W pullback f g} (h₀ : CategoryStruct.comp k (fst f g) = CategoryStruct.comp l (fst f g)) (h₁ : CategoryStruct.comp k (snd f g) = CategoryStruct.comp l (snd f g)) :
k = l

Two morphisms into a pullback are equal if their compositions with the pullback morphisms are equal

def CategoryTheory.Limits.pullbackIsPullback {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :

The pullback cone built from the pullback projections is a pullback.

Equations
theorem CategoryTheory.Limits.pushout.hom_ext {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] {W : C} {k l : pushout f g W} (h₀ : CategoryStruct.comp (inl f g) k = CategoryStruct.comp (inl f g) l) (h₁ : CategoryStruct.comp (inr f g) k = CategoryStruct.comp (inr f g) l) :
k = l

Two morphisms out of a pushout are equal if their compositions with the pushout morphisms are equal

def CategoryTheory.Limits.pushoutIsPushout {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :

The pushout cocone built from the pushout coprojections is a pushout.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.pullback.lift_fst_snd {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :
lift (fst f g) (snd f g) = CategoryStruct.id (pullback f g)
@[simp]
theorem CategoryTheory.Limits.pushout.desc_inl_inr {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :
desc (inl f g) (inr f g) = CategoryStruct.id (pushout f g)
@[reducible, inline]
abbrev CategoryTheory.Limits.pullback.map {C : Type u} [Category.{v, u} C] {W X Y Z S T : C} (f₁ : W S) (f₂ : X S) [HasPullback f₁ f₂] (g₁ : Y T) (g₂ : Z T) [HasPullback g₁ g₂] (i₁ : W Y) (i₂ : X Z) (i₃ : S T) (eq₁ : CategoryStruct.comp f₁ i₃ = CategoryStruct.comp i₁ g₁) (eq₂ : CategoryStruct.comp f₂ i₃ = CategoryStruct.comp i₂ g₂) :
pullback f₁ f₂ pullback g₁ g₂

Given such a diagram, then there is a natural morphism W ×ₛ X ⟶ Y ×ₜ Z.

W ⟶ Y
  ↘   ↘
  S ⟶ T
  ↗   ↗
X ⟶ Z
Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

The canonical map X ×ₛ Y ⟶ X ×ₜ Y given S ⟶ T.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Limits.pullback.map_comp {C : Type u} [Category.{v, u} C] {X Y Z X' Y' Z' X'' Y'' Z'' : C} {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} {f'' : X'' Z''} {g'' : Y'' Z''} (i₁ : X X') (j₁ : X' X'') (i₂ : Y Y') (j₂ : Y' Y'') (i₃ : Z Z') (j₃ : Z' Z'') [HasPullback f g] [HasPullback f' g'] [HasPullback f'' g''] (e₁ : CategoryStruct.comp f i₃ = CategoryStruct.comp i₁ f') (e₂ : CategoryStruct.comp g i₃ = CategoryStruct.comp i₂ g') (e₃ : CategoryStruct.comp f' j₃ = CategoryStruct.comp j₁ f'') (e₄ : CategoryStruct.comp g' j₃ = CategoryStruct.comp j₂ g'') :
CategoryStruct.comp (map f g f' g' i₁ i₂ i₃ e₁ e₂) (map f' g' f'' g'' j₁ j₂ j₃ e₃ e₄) = map f g f'' g'' (CategoryStruct.comp i₁ j₁) (CategoryStruct.comp i₂ j₂) (CategoryStruct.comp i₃ j₃)
theorem CategoryTheory.Limits.pullback.map_comp_assoc {C : Type u} [Category.{v, u} C] {X Y Z X' Y' Z' X'' Y'' Z'' : C} {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} {f'' : X'' Z''} {g'' : Y'' Z''} (i₁ : X X') (j₁ : X' X'') (i₂ : Y Y') (j₂ : Y' Y'') (i₃ : Z Z') (j₃ : Z' Z'') [HasPullback f g] [HasPullback f' g'] [HasPullback f'' g''] (e₁ : CategoryStruct.comp f i₃ = CategoryStruct.comp i₁ f') (e₂ : CategoryStruct.comp g i₃ = CategoryStruct.comp i₂ g') (e₃ : CategoryStruct.comp f' j₃ = CategoryStruct.comp j₁ f'') (e₄ : CategoryStruct.comp g' j₃ = CategoryStruct.comp j₂ g'') {Z✝ : C} (h : pullback f'' g'' Z✝) :
CategoryStruct.comp (map f g f' g' i₁ i₂ i₃ e₁ e₂) (CategoryStruct.comp (map f' g' f'' g'' j₁ j₂ j₃ e₃ e₄) h) = CategoryStruct.comp (map f g f'' g'' (CategoryStruct.comp i₁ j₁) (CategoryStruct.comp i₂ j₂) (CategoryStruct.comp i₃ j₃) ) h
@[simp]
theorem CategoryTheory.Limits.pullback.map_id {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Z} {g : Y Z} [HasPullback f g] :
@[reducible, inline]
abbrev CategoryTheory.Limits.pushout.map {C : Type u} [Category.{v, u} C] {W X Y Z S T : C} (f₁ : S W) (f₂ : S X) [HasPushout f₁ f₂] (g₁ : T Y) (g₂ : T Z) [HasPushout g₁ g₂] (i₁ : W Y) (i₂ : X Z) (i₃ : S T) (eq₁ : CategoryStruct.comp f₁ i₁ = CategoryStruct.comp i₃ g₁) (eq₂ : CategoryStruct.comp f₂ i₂ = CategoryStruct.comp i₃ g₂) :
pushout f₁ f₂ pushout g₁ g₂

Given such a diagram, then there is a natural morphism W ⨿ₛ X ⟶ Y ⨿ₜ Z.

  W ⟶ Y
 ↗   ↗
S ⟶ T
 ↘   ↘
  X ⟶ Z
Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

The canonical map X ⨿ₛ Y ⟶ X ⨿ₜ Y given S ⟶ T.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Limits.pushout.map_comp {C : Type u} [Category.{v, u} C] {X Y Z X' Y' Z' X'' Y'' Z'' : C} {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} {f'' : X'' Y''} {g'' : X'' Z''} (i₁ : X X') (j₁ : X' X'') (i₂ : Y Y') (j₂ : Y' Y'') (i₃ : Z Z') (j₃ : Z' Z'') [HasPushout f g] [HasPushout f' g'] [HasPushout f'' g''] (e₁ : CategoryStruct.comp f i₂ = CategoryStruct.comp i₁ f') (e₂ : CategoryStruct.comp g i₃ = CategoryStruct.comp i₁ g') (e₃ : CategoryStruct.comp f' j₂ = CategoryStruct.comp j₁ f'') (e₄ : CategoryStruct.comp g' j₃ = CategoryStruct.comp j₁ g'') :
CategoryStruct.comp (map f g f' g' i₂ i₃ i₁ e₁ e₂) (map f' g' f'' g'' j₂ j₃ j₁ e₃ e₄) = map f g f'' g'' (CategoryStruct.comp i₂ j₂) (CategoryStruct.comp i₃ j₃) (CategoryStruct.comp i₁ j₁)
theorem CategoryTheory.Limits.pushout.map_comp_assoc {C : Type u} [Category.{v, u} C] {X Y Z X' Y' Z' X'' Y'' Z'' : C} {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} {f'' : X'' Y''} {g'' : X'' Z''} (i₁ : X X') (j₁ : X' X'') (i₂ : Y Y') (j₂ : Y' Y'') (i₃ : Z Z') (j₃ : Z' Z'') [HasPushout f g] [HasPushout f' g'] [HasPushout f'' g''] (e₁ : CategoryStruct.comp f i₂ = CategoryStruct.comp i₁ f') (e₂ : CategoryStruct.comp g i₃ = CategoryStruct.comp i₁ g') (e₃ : CategoryStruct.comp f' j₂ = CategoryStruct.comp j₁ f'') (e₄ : CategoryStruct.comp g' j₃ = CategoryStruct.comp j₁ g'') {Z✝ : C} (h : pushout f'' g'' Z✝) :
CategoryStruct.comp (map f g f' g' i₂ i₃ i₁ e₁ e₂) (CategoryStruct.comp (map f' g' f'' g'' j₂ j₃ j₁ e₃ e₄) h) = CategoryStruct.comp (map f g f'' g'' (CategoryStruct.comp i₂ j₂) (CategoryStruct.comp i₃ j₃) (CategoryStruct.comp i₁ j₁) ) h
@[simp]
theorem CategoryTheory.Limits.pushout.map_id {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {g : X Z} [HasPushout f g] :
instance CategoryTheory.Limits.pullback.map_isIso {C : Type u} [Category.{v, u} C] {W X Y Z S T : C} (f₁ : W S) (f₂ : X S) [HasPullback f₁ f₂] (g₁ : Y T) (g₂ : Z T) [HasPullback g₁ g₂] (i₁ : W Y) (i₂ : X Z) (i₃ : S T) (eq₁ : CategoryStruct.comp f₁ i₃ = CategoryStruct.comp i₁ g₁) (eq₂ : CategoryStruct.comp f₂ i₃ = CategoryStruct.comp i₂ g₂) [IsIso i₁] [IsIso i₂] [IsIso i₃] :
IsIso (map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂)
def CategoryTheory.Limits.pullback.congrHom {C : Type u} [Category.{v, u} C] {X Y Z : C} {f₁ f₂ : X Z} {g₁ g₂ : Y Z} (h₁ : f₁ = f₂) (h₂ : g₁ = g₂) [HasPullback f₁ g₁] [HasPullback f₂ g₂] :
pullback f₁ g₁ pullback f₂ g₂

If f₁ = f₂ and g₁ = g₂, we may construct a canonical isomorphism pullback f₁ g₁ ≅ pullback f₂ g₂

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.pullback.congrHom_hom {C : Type u} [Category.{v, u} C] {X Y Z : C} {f₁ f₂ : X Z} {g₁ g₂ : Y Z} (h₁ : f₁ = f₂) (h₂ : g₁ = g₂) [HasPullback f₁ g₁] [HasPullback f₂ g₂] :
(congrHom h₁ h₂).hom = map f₁ g₁ f₂ g₂ (CategoryStruct.id X) (CategoryStruct.id Y) (CategoryStruct.id Z)
@[simp]
theorem CategoryTheory.Limits.pullback.congrHom_inv {C : Type u} [Category.{v, u} C] {X Y Z : C} {f₁ f₂ : X Z} {g₁ g₂ : Y Z} (h₁ : f₁ = f₂) (h₂ : g₁ = g₂) [HasPullback f₁ g₁] [HasPullback f₂ g₂] :
(congrHom h₁ h₂).inv = map f₂ g₂ f₁ g₁ (CategoryStruct.id X) (CategoryStruct.id Y) (CategoryStruct.id Z)
instance CategoryTheory.Limits.pushout.map_isIso {C : Type u} [Category.{v, u} C] {W X Y Z S T : C} (f₁ : S W) (f₂ : S X) [HasPushout f₁ f₂] (g₁ : T Y) (g₂ : T Z) [HasPushout g₁ g₂] (i₁ : W Y) (i₂ : X Z) (i₃ : S T) (eq₁ : CategoryStruct.comp f₁ i₁ = CategoryStruct.comp i₃ g₁) (eq₂ : CategoryStruct.comp f₂ i₂ = CategoryStruct.comp i₃ g₂) [IsIso i₁] [IsIso i₂] [IsIso i₃] :
IsIso (map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂)
def CategoryTheory.Limits.pushout.congrHom {C : Type u} [Category.{v, u} C] {X Y Z : C} {f₁ f₂ : X Y} {g₁ g₂ : X Z} (h₁ : f₁ = f₂) (h₂ : g₁ = g₂) [HasPushout f₁ g₁] [HasPushout f₂ g₂] :
pushout f₁ g₁ pushout f₂ g₂

If f₁ = f₂ and g₁ = g₂, we may construct a canonical isomorphism pushout f₁ g₁ ≅ pullback f₂ g₂

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.pushout.congrHom_hom {C : Type u} [Category.{v, u} C] {X Y Z : C} {f₁ f₂ : X Y} {g₁ g₂ : X Z} (h₁ : f₁ = f₂) (h₂ : g₁ = g₂) [HasPushout f₁ g₁] [HasPushout f₂ g₂] :
(congrHom h₁ h₂).hom = map f₁ g₁ f₂ g₂ (CategoryStruct.id Y) (CategoryStruct.id Z) (CategoryStruct.id X)
@[simp]
theorem CategoryTheory.Limits.pushout.congrHom_inv {C : Type u} [Category.{v, u} C] {X Y Z : C} {f₁ f₂ : X Y} {g₁ g₂ : X Z} (h₁ : f₁ = f₂) (h₂ : g₁ = g₂) [HasPushout f₁ g₁] [HasPushout f₂ g₂] :
(congrHom h₁ h₂).inv = map f₂ g₂ f₁ g₁ (CategoryStruct.id Y) (CategoryStruct.id Z) (CategoryStruct.id X)
def CategoryTheory.Limits.pullbackComparison {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Z) (g : Y Z) [HasPullback f g] [HasPullback (G.map f) (G.map g)] :
G.obj (pullback f g) pullback (G.map f) (G.map g)

The comparison morphism for the pullback of f,g. This is an isomorphism iff G preserves the pullback of f,g; see Mathlib/CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean

Equations
@[simp]
theorem CategoryTheory.Limits.pullbackComparison_comp_fst {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Z) (g : Y Z) [HasPullback f g] [HasPullback (G.map f) (G.map g)] :
@[simp]
theorem CategoryTheory.Limits.pullbackComparison_comp_fst_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Z) (g : Y Z) [HasPullback f g] [HasPullback (G.map f) (G.map g)] {Z✝ : D} (h : G.obj X Z✝) :
@[simp]
theorem CategoryTheory.Limits.pullbackComparison_comp_snd {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Z) (g : Y Z) [HasPullback f g] [HasPullback (G.map f) (G.map g)] :
@[simp]
theorem CategoryTheory.Limits.pullbackComparison_comp_snd_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Z) (g : Y Z) [HasPullback f g] [HasPullback (G.map f) (G.map g)] {Z✝ : D} (h : G.obj Y Z✝) :
@[simp]
theorem CategoryTheory.Limits.map_lift_pullbackComparison {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Z) (g : Y Z) [HasPullback f g] [HasPullback (G.map f) (G.map g)] {W : C} {h : W X} {k : W Y} (w : CategoryStruct.comp h f = CategoryStruct.comp k g) :
@[simp]
theorem CategoryTheory.Limits.map_lift_pullbackComparison_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Z) (g : Y Z) [HasPullback f g] [HasPullback (G.map f) (G.map g)] {W : C} {h : W X} {k : W Y} (w : CategoryStruct.comp h f = CategoryStruct.comp k g) {Z✝ : D} (h✝ : pullback (G.map f) (G.map g) Z✝) :
def CategoryTheory.Limits.pushoutComparison {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Y) (g : X Z) [HasPushout f g] [HasPushout (G.map f) (G.map g)] :
pushout (G.map f) (G.map g) G.obj (pushout f g)

The comparison morphism for the pushout of f,g. This is an isomorphism iff G preserves the pushout of f,g; see Mathlib/CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean

Equations
@[simp]
theorem CategoryTheory.Limits.inl_comp_pushoutComparison {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Y) (g : X Z) [HasPushout f g] [HasPushout (G.map f) (G.map g)] :
@[simp]
theorem CategoryTheory.Limits.inl_comp_pushoutComparison_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Y) (g : X Z) [HasPushout f g] [HasPushout (G.map f) (G.map g)] {Z✝ : D} (h : G.obj (pushout f g) Z✝) :
@[simp]
theorem CategoryTheory.Limits.inr_comp_pushoutComparison {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Y) (g : X Z) [HasPushout f g] [HasPushout (G.map f) (G.map g)] :
@[simp]
theorem CategoryTheory.Limits.inr_comp_pushoutComparison_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Y) (g : X Z) [HasPushout f g] [HasPushout (G.map f) (G.map g)] {Z✝ : D} (h : G.obj (pushout f g) Z✝) :
@[simp]
theorem CategoryTheory.Limits.pushoutComparison_map_desc {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Y) (g : X Z) [HasPushout f g] [HasPushout (G.map f) (G.map g)] {W : C} {h : Y W} {k : Z W} (w : CategoryStruct.comp f h = CategoryStruct.comp g k) :
@[simp]
theorem CategoryTheory.Limits.pushoutComparison_map_desc_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) (f : X Y) (g : X Z) [HasPushout f g] [HasPushout (G.map f) (G.map g)] {W : C} {h : Y W} {k : Z W} (w : CategoryStruct.comp f h = CategoryStruct.comp g k) {Z✝ : D} (h✝ : G.obj W Z✝) :
theorem CategoryTheory.Limits.hasPullback_symmetry {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :

Making this a global instance would make the typeclass search go in an infinite loop.

def CategoryTheory.Limits.pullbackSymmetry {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [HasPullback f g] :

The isomorphism X ×[Z] Y ≅ Y ×[Z] X.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Limits.hasPushout_symmetry {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :

Making this a global instance would make the typeclass search go in an infinite loop.

def CategoryTheory.Limits.pushoutSymmetry {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [HasPushout f g] :

The isomorphism Y ⨿[X] Z ≅ Z ⨿[X] Y.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Limits.hasPullbacks_of_hasLimit_cospan (C : Type u) [Category.{v, u} C] [∀ {X Y Z : C} {f : X Z} {g : Y Z}, HasLimit (cospan f g)] :

If C has all limits of diagrams cospan f g, then it has all pullbacks

theorem CategoryTheory.Limits.hasPushouts_of_hasColimit_span (C : Type u) [Category.{v, u} C] [∀ {X Y Z : C} {f : X Y} {g : X Z}, HasColimit (span f g)] :

If C has all colimits of diagrams span f g, then it has all pushouts

@[instance 100]

Having wide pullback at any universe level implies having binary pullbacks.

@[instance 100]

Having wide pushout at any universe level implies having binary pushouts.