Prime Number Theorem And ...

Bibliography

1

Sreerupa Bhattacharjee. A survey of Büthe’s method for estimating prime counting functions. Master’s thesis, University of Lethbridge, Lethbridge, Alberta, 2023.

2

Samuel Broadbent, Habiba Kadiri, Allysa Lumley, Nathan Ng, and Kirsten Wilk. Sharper bounds for the Chebyshev function \(\theta (x)\). Math. Comp., 90(331):2281–2315, 2021.

3

Jan Büthe. Estimating \(\pi (x)\) and related functions under partial RH assumptions. Math. Comp., 85(301):2483–2498, 2016.

4

Jan Büthe. An analytic method for bounding \(\psi (x)\). Math. Comp., 87(312):1991–2009, 2018.

5

Yuanyou Cheng. An explicit upper bound for the Riemann zeta-function near the line \(\sigma =1\). Rocky Mountain J. Math., 29(1):115–140, 1999.

6

Andrés Chirre and Harald Andrés Helfgott. Optimal bounds for sums of non-negative arithmetic functions, 2025.

7

N. Costa Pereira. Estimates for the Chebyshev function \(\psi (x)-\theta (x)\). Math. Comp., 44(169):211–221, 1985.

8

Juan Arias de Reyna. On the approximation of the zeta function by dirichlet polynomials. 2024.

9

Harold G. Diamond. Elementary methods in the study of the distribution of prime numbers. Bull. Amer. Math. Soc. (N.S.), 7(3):553–589, 1982.

10

Daniele Dona, Harald A. Helfgott, and Sebastian Zuniga Alterman. Explicit \(L^2\) bounds for the Riemann \(\zeta \) function. J. Théor. Nombres Bordx., 34(1):91–133, 2022.

11

Adrian W. Dudek. An explicit result for primes between cubes. Funct. Approx. Comment. Math., 55(2):177–197, 2016.

12

Pierre Dusart. Explicit estimates of some functions over primes. Ramanujan J., 45(1):227–251, 2018.

13

Andrew Fiori, Habiba Kadiri, and Joshua Swidinsky. Sharper bounds for the Chebyshev function \(\psi (x)\). J. Math. Anal. Appl., 527(2):Paper No. 127426, 28, 2023.

14

Andrew Fiori, Habiba Kadiri, and Joshua Swidinsky. Sharper bounds for the error term in the prime number theorem. Res. Number Theory, 9(3):Paper No. 63, 19, 2023.

15

G. H. Hardy and J. E. Littlewood. The zeros of Riemann’s zeta-function on the critical line. Math. Z., 10:283–317, 1921.

16

Habiba Kadiri. A zero density result for the Riemann zeta function. Acta Arith., 160(2):185–200, 2013.

17

Habiba Kadiri, Allysa Lumley, and Nathan Ng. Explicit zero density for the Riemann zeta function. J. Math. Anal. Appl., 465(1):22–46, 2018.

18

Hugh L. Montgomery and Robert C. Vaughan. Multiplicative number theory. I. Classical theory, volume 97 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.

19

David J. Platt and Timothy S. Trudgian. The error term in the prime number theorem. Math. Comp., 90(328):871–881, 2021.

20

J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois J. Math., 6:64–94, 1962.

21

Yannick Saouter, Timothy Trudgian, and Patrick Demichel. A still sharper region where \(\pi (x)-{\rm li}(x)\) is positive. Math. Comp., 84(295):2433–2446, 2015.

22

Aleksander Simonic. Explicit zero density estimate for the Riemann zeta-function near the critical line. J. Math. Anal. Appl., 491(1):124303, 41, 2020.

23

Gérald Tenenbaum. Introduction to analytic and probabilistic number theory. Transl. from the 3rd French edition by Patrick D. F. Ion, volume 163 of Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS), 3rd expanded ed. edition, 2015.

24

E. C. Titchmarsh. The theory of the Riemann zeta-function. The Clarendon Press, Oxford University Press, New York, second edition, 1986. Edited and with a preface by D. R. Heath-Brown.