Bibliography
- 1
Sreerupa Bhattacharjee. A survey of Büthe’s method for estimating prime counting functions. Master’s thesis, University of Lethbridge, Lethbridge, Alberta, 2023.
- 2
Samuel Broadbent, Habiba Kadiri, Allysa Lumley, Nathan Ng, and Kirsten Wilk. Sharper bounds for the Chebyshev function \(\theta (x)\). Math. Comp., 90(331):2281–2315, 2021.
- 3
Jan Büthe. Estimating \(\pi (x)\) and related functions under partial RH assumptions. Math. Comp., 85(301):2483–2498, 2016.
- 4
Jan Büthe. An analytic method for bounding \(\psi (x)\). Math. Comp., 87(312):1991–2009, 2018.
- 5
Yuanyou Cheng. An explicit upper bound for the Riemann zeta-function near the line \(\sigma =1\). Rocky Mountain J. Math., 29(1):115–140, 1999.
- 6
Andrés Chirre and Harald Andrés Helfgott. Optimal bounds for sums of non-negative arithmetic functions, 2025.
- 7
N. Costa Pereira. Estimates for the Chebyshev function \(\psi (x)-\theta (x)\). Math. Comp., 44(169):211–221, 1985.
- 8
Juan Arias de Reyna. On the approximation of the zeta function by dirichlet polynomials. 2024.
- 9
Harold G. Diamond. Elementary methods in the study of the distribution of prime numbers. Bull. Amer. Math. Soc. (N.S.), 7(3):553–589, 1982.
- 10
Daniele Dona, Harald A. Helfgott, and Sebastian Zuniga Alterman. Explicit \(L^2\) bounds for the Riemann \(\zeta \) function. J. Théor. Nombres Bordx., 34(1):91–133, 2022.
- 11
Adrian W. Dudek. An explicit result for primes between cubes. Funct. Approx. Comment. Math., 55(2):177–197, 2016.
- 12
Pierre Dusart. Explicit estimates of some functions over primes. Ramanujan J., 45(1):227–251, 2018.
- 13
Andrew Fiori, Habiba Kadiri, and Joshua Swidinsky. Sharper bounds for the Chebyshev function \(\psi (x)\). J. Math. Anal. Appl., 527(2):Paper No. 127426, 28, 2023.
- 14
Andrew Fiori, Habiba Kadiri, and Joshua Swidinsky. Sharper bounds for the error term in the prime number theorem. Res. Number Theory, 9(3):Paper No. 63, 19, 2023.
- 15
G. H. Hardy and J. E. Littlewood. The zeros of Riemann’s zeta-function on the critical line. Math. Z., 10:283–317, 1921.
- 16
Habiba Kadiri. A zero density result for the Riemann zeta function. Acta Arith., 160(2):185–200, 2013.
- 17
Habiba Kadiri, Allysa Lumley, and Nathan Ng. Explicit zero density for the Riemann zeta function. J. Math. Anal. Appl., 465(1):22–46, 2018.
- 18
Hugh L. Montgomery and Robert C. Vaughan. Multiplicative number theory. I. Classical theory, volume 97 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.
- 19
David J. Platt and Timothy S. Trudgian. The error term in the prime number theorem. Math. Comp., 90(328):871–881, 2021.
- 20
J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois J. Math., 6:64–94, 1962.
- 21
Yannick Saouter, Timothy Trudgian, and Patrick Demichel. A still sharper region where \(\pi (x)-{\rm li}(x)\) is positive. Math. Comp., 84(295):2433–2446, 2015.
- 22
Aleksander Simonic. Explicit zero density estimate for the Riemann zeta-function near the critical line. J. Math. Anal. Appl., 491(1):124303, 41, 2020.
- 23
Gérald Tenenbaum. Introduction to analytic and probabilistic number theory. Transl. from the 3rd French edition by Patrick D. F. Ion, volume 163 of Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS), 3rd expanded ed. edition, 2015.
- 24
E. C. Titchmarsh. The theory of the Riemann zeta-function. The Clarendon Press, Oxford University Press, New York, second edition, 1986. Edited and with a preface by D. R. Heath-Brown.