Prime Number Theorem And ...

7 Zeta function estimates

7.1 Definitions

Definition 7.1.1

\(\rho \) is understood to lie in the set \(\{ s: \zeta (s)=0\} \), counted with multiplicity. We will often restrict the zeroes \(\rho \) to a rectangle \(\{ \Re \rho \in I, \Im \rho \in J \} \), for instance through sums of the form \(\sum _{\Re \rho \in I, \Im \rho \in J} f(\rho )\).

Definition 7.1.2
#

We say that the Riemann hypothesis has been verified up to height \(T\) if there are no zeroes in the rectangle \(\{ \Re \rho \in (0.5, 1), \Im \rho \in [0,T] \} \).

Definition 7.1.3 Section 1.1, FKS2
#

We say that one has a classical zero-free region with parameter \(R\) if \(zeta(s)\) has no zeroes in the region \(Re(s) \geq 1 - 1 / R * \log |\Im s|\) for \(\Im (s) {\gt} 3\).

Definition 7.1.4 Zero counting function N(T)

The number of zeroes of imaginary part between 0 and T, counting multiplicity

Definition 7.1.5 Riemann von Mangoldt estimate

An estimate of the form \(N(T) - \frac{T}{2\pi } \log \frac{T}{2\pi e} + \frac{7}{8}| \leq b_1 \log T + b_2 \log \log T + b_3\) for \(T \geq 2\).

Definition 7.1.6 Zero density bound
#

An estimate of the form \(N(\sigma ,T) \leq c₁ T^p \log ^q T + c₂ \log ^2 T - \frac{T}{2\pi } \log \frac{T}{2\pi e} + \frac{7}{8}| \leq b_1 \log T + b_2 \log \log T + b_3\) for \(T \geq 2\).

7.2 The estimates of Kadiri, Lumley, and Ng

In this section we establish the primary results of [ 9 ] .

7.3 The zeta function bounds of Rosser and Schoenfeld

In this section we formalize the zeta function bounds of Rosser and Schoenfeld.

Theorem 7.3.1 Rosser–Schoenfeld Theorem 19
#

One has a Riemann von Mangoldt estimate with parameters 0.137, 0.443, and 1.588.

Proof

7.4 Approximating the Riemann zeta function

We want a good explicit estimate on

\[ \sum _{n\leq a} \frac{1}{n^s} - \int _0^{a} \frac{du}{u^s}, \]

for \(a\) a half-integer. As it turns out, this is the same problem as that of approximating \(\zeta (s)\) by a sum \(\sum _{n\leq a} n^{-s}\). This is one of the two 1 main, standard ways of approximating \(\zeta (s)\).

The non-explicit version of the result was first proved in [ 8 , Lemmas 1 and 2 ] . The proof there uses first-order Euler-Maclaurin combined with a decomposition of \(\lfloor x\rfloor - x +1/2\) that turns out to be equivalent to Poisson summation. The exposition in [ 14 , § 4.7–4.11 ] uses first-order Euler-Maclaurin and van de Corput’s Process B; the main idea of the latter is Poisson summation.

There are already several explicit versions of the result in the literature. In [ 2 ] , [ and [ 12 ] , what we have is successively sharper explicit versions of Hardy and Littlewood’s original proof. The proof in [ 4 , Lemma 2.10 ] proceeds simply by a careful estimation of the terms in high-order Euler-Maclaurin; it does not use Poisson summation. Finally, [ 3 ] is an explicit version of [ 14 , § 4.7–4.11 ] ; it gives a weaker bound than [ 12 ] or [ 4 ] . The strongest of these results is [ 12 ] .

We will give another version here, in part because we wish to relax conditions – we will work with \(\left|\Im s\right| {\lt} 2\pi a\) rather than \(\left|\Im s\right| \leq a\) – and in part to show that one can prove an asymptotically optimal result easily and concisely. We will use first-order Euler-Maclaurin and Poisson summation. We assume that \(a\) is a half-integer; if one inserts the same assumption into [ 4 , Lemma 2.10 ] , one can improve the result there, yielding an error term closer to the one here.

For additional context, see the Zulip discussion at https://leanprover.zulipchat.com/#narrow/channel/423402-PrimeNumberTheorem.2B/ topic/Let.20us.20formalize.20an.20appendix

Definition 7.4.1 e
#

We recall that \(e(\alpha ) = e^{2\pi i \alpha }\).

7.4.1 The decay of a Fourier transform

Our first objective will be to estimate the Fourier transform of \(t^{-s} \mathbb {1}_{[a,b]}\). In particular, we will show that, if \(a\) and \(b\) are half-integers, the Fourier cosine transform has quadratic decay when evaluated at integers. In general, for real arguments, the Fourier transform of a discontinuous function such as \(t^{-s} \mathbb {1}_{[a,b]}\) does not have quadratic decay.

Lemma 7.4.1 Fourier transform of a truncated power law
# Discussion

Let \(s = \sigma + i \tau \), \(\sigma \geq 0\), \(\tau \in \mathbb {R}\). Let \(\nu \in \mathbb {R}\setminus \{ 0\} \), \(b{\gt}a{\gt}\frac{|\tau |}{2\pi |\nu |}\). Then

\begin{equation} \label{eq:aachquno}\int _a^b t^{-s} e(\nu t) dt = \left. \frac{t^{-\sigma } e(\varphi _\nu (t))}{2\pi i \varphi _\nu '(t)}\right|_a^b + \sigma \int _a^b \frac{t^{-\sigma -1}}{2\pi i \varphi _\nu '(t)} e(\varphi _\nu (t)) dt + \int _a^b \frac{t^{-\sigma } \varphi _\nu ''(t)}{2\pi i (\varphi _\nu '(t))^2} e(\varphi _\nu (t)) dt, \end{equation}
1

where \(\varphi _\nu (t) = \nu t - \frac{\tau }{2\pi } \log t\).

Proof

We write \(t^{-s} e(\nu t) = t^{-\sigma } e(\varphi _\nu (t))\) and integrate by parts with \(u = t^{-\sigma }/(2\pi i \varphi _\nu '(t))\), \(v = e(\varphi _\nu (t))\). Here \(\varphi _\nu '(t) = \nu - \tau /(2\pi t)\ne 0\) for \(t\in [a,b]\) because \(t\geq a {\gt} |\tau |/(2\pi |\nu |)\) implies \(|\nu |{\gt}|\tau |/(2\pi t)\). Clearly

\[ u dv = \frac{ t^{-\sigma }}{2\pi i \varphi _\nu '(t)} \cdot 2\pi i \varphi _\nu '(t) e(\varphi _\nu (t)) dt = t^{-\sigma } e(\varphi _\nu (t)) dt, \]

while

\[ du = \left(\frac{-\sigma t^{-\sigma -1}}{2\pi i \varphi _\nu '(t)} - \frac{t^{-\sigma } \varphi _\nu ''(t)}{2\pi i (\varphi _\nu '(t))^2}\right) dt. \]
Lemma 7.4.2 Total variation of a function with monotone absolute value
# Discussion

Let \(g:[a,b]\to \mathbb {R}\) be continuous, with \(|g(t)|\) non-increasing. Then \(g\) is monotone, and \(\| g\| _{\mathrm{TV}} = |g(a)|-|g(b)|\).

Proof

Suppose \(g\) changed sign: \(g(a'){\gt}0{\gt}g(b')\) or \(g(a') {\lt}0 {\lt} g(b')\) for some \(a\leq a'{\lt} b'\leq b\). By IVT, there would be an \(r\in [a',b']\) such that \(g(r)=0\). Since \(|g|\) is non-increasing, \(g(b')=0\); contradiction. So, \(g\) does not change sign: either \(g\leq 0\) or \(g\geq 0\).

Thus, there is an \(\varepsilon \in \{ -1,1\} \) such that \(g(t) = \varepsilon |g(t)|\) for all \(t\in [a,b]\). Hence, \(g\) is monotone. Then \(\| g\| _{\mathrm{TV}} = |g(a)-g(b)|\). Since \(|g(a)|\geq |g(b)|\) and \(g(a)\), \(g(b)\) are either both non-positive or non-negative, \(|g(a)-g(b)| = |g(a)|-|g(b)|\).

Lemma 7.4.3 Non-stationary phase estimate

Let \(\varphi :[a,b]\to \mathbb {R}\) be \(C^1\) with \(\varphi '(t)\ne 0\) for all \(t\in [a,b]\). Let \(h:[a,b]\to \mathbb {R}\) be such that \(g(t) = h(t)/\varphi '(t)\) is continuous and \(|g(t)|\) is non-increasing. Then

\[ \left|\int _a^b h(t) e(\varphi (t)) dt\right|\leq \frac{|g(a)|}{\pi }. \]
Proof

Since \(\varphi \) is \(C^1\), \(e(\varphi (t))\) is \(C^1\), and \(h(t) e(\varphi (t)) = \frac{h(t)}{2\pi i \varphi '(t)} \frac{d}{dt} e(\varphi (t))\) everywhere. By Lemma 7.4.2, \(g\) is of bounded variation. Hence, we can integrate by parts:

\[ \int _a^b h(t) e(\varphi (t)) dt = \left. \frac{h(t) e(\varphi (t))}{2\pi i \varphi '(t)}\right|_a^b - \int _a^b e(\varphi (t))\, d\left(\frac{h(t)}{2\pi i \varphi '(t)}\right). \]

The first term on the right has absolute value \(\leq \frac{|g(a)|+|g(b)|}{2\pi }\). Again by Lemma 7.4.2,

\[ \left| \int _a^b e(\varphi (t))\, d\left(\frac{h(t)}{2\pi i \varphi '(t)}\right) \right|\leq \frac{1}{2\pi } \| g\| _{\mathrm{TV}} = \frac{|g(a)|-|g(b)|}{2\pi }. \]

We are done by \(\frac{|g(a)|+|g(b)|}{2\pi } + \frac{|g(a)|-|g(b)|}{2\pi } = \frac{|g(a)|}{\pi }\).

Lemma 7.4.4 A decreasing function
# Discussion

Let \(\sigma \geq 0\), \(\tau \in \mathbb {R}\), \(\nu \in \mathbb {R}\setminus \{ 0\} \). Let \(b{\gt}a{\gt}\frac{|\tau |}{2\pi |\nu |}\). Then, for any \(k\geq 1\), \(f(t) = t^{-\sigma -k} |2\pi \nu -\tau /t|^{-k-1}\) is decreasing on \([a,b]\).

Proof

Let \(a\leq t\leq b\). Since \(\left|\frac{\tau }{t \nu }\right| {\lt} 2\pi \), we see that \(2\pi -\frac{\tau }{\nu t} {\gt}0\), and so \(|2\pi \nu -\tau /t|^{-k-1} = |\nu |^{-k-1} \left(2\pi - \frac{\tau }{t \nu }\right)^{-k-1}\). Now we take logarithmic derivatives:

\[ t (\log f(t))' = - (\sigma +k) - (k+1) \frac{\tau /t}{2\pi \nu - \tau /t} = -\sigma - \frac{2\pi k + \frac{\tau }{t \nu }}{2\pi - \frac{\tau }{t \nu }} {\lt} -\sigma \leq 0, \]

since, again by \(\frac{|\tau |}{t |\nu |} {\lt} 2\pi \) and \(k\geq 1\), we have \(2\pi k + \frac{\tau }{t \nu }{\gt}0\), and, as we said, \(2\pi - \frac{\tau }{t \nu }{\gt}0\).

Lemma 7.4.5 Estimating an integral

Let \(s = \sigma + i \tau \), \(\sigma \geq 0\), \(\tau \in \mathbb {R}\). Let \(\nu \in \mathbb {R}\setminus \{ 0\} \), \(b{\gt}a{\gt}\frac{|\tau |}{2\pi |\nu |}\). Then

\[ \int _a^b t^{-s} e(\nu t) dt = \left. \frac{t^{-\sigma } e(\varphi _\nu (t))}{2\pi i \varphi _\nu '(t)}\right|_a^b + \frac{a^{-\sigma -1}}{2\pi ^2} O^*\left(\frac{\sigma }{(\nu -\vartheta )^2} + \frac{|\vartheta |}{|\nu -\vartheta |^3}\right), \]

where \(\varphi _\nu (t) = \nu t - \frac{\tau }{2\pi } \log t\) and \(\vartheta = \frac{\tau }{2\pi a}\).

Proof

Apply Lemma 7.4.1. Since \(\varphi _\nu '(t) = \nu - \tau /(2\pi t)\), we know by Lemma 7.4.4 (with \(k=1\)) that \(g_1(t) = \frac{t^{-\sigma -1}}{(\varphi _\nu '(t))^2}\) is decreasing on \([a,b]\). We know that \(\varphi _\nu '(t)\ne 0\) for \(t\geq a\) by \(a{\gt}\frac{|\tau |}{2\pi |\nu |}\), and so we also know that \(g_1(t)\) is continuous for \(t\geq a\). Hence, by Lemma 7.4.3,

\[ \left|\int _a^b \frac{t^{-\sigma -1}}{2\pi i \varphi _\nu '(t)} e(\varphi _\nu (t)) dt \right| \leq \frac{1}{2\pi } \cdot \frac{|g_1(a)|}{\pi } = \frac{1}{2\pi ^2} \frac{a^{-\sigma -1}}{\left|\nu - \vartheta \right|^2}, \]

since \(\varphi _\nu '(a) = \nu - \vartheta \). We remember to include the factor of \(\sigma \) in front of an integral in 1.

Since \(\varphi _\nu '(t)\) is as above and \(\varphi _\nu ''(t) = \tau /(2\pi t^2)\), we know by Lemma 7.4.4 (with \(k=2\)) that \(g_2(t) = \frac{t^{-\sigma } |\varphi _\nu ''(t)|}{|\varphi _\nu '(t)|^3} = \frac{|\tau |}{2\pi } \frac{t^{-\sigma -2}}{|\varphi _\nu '(t)|^3}\) is decreasing on \([a,b]\) we also know, as before, that \(g_2(t)\) is continuous. Hence, again by Lemma 7.4.3,

\[ \left|\int _a^b \frac{t^{-\sigma } \varphi _\nu ''(t)}{2\pi i (\varphi _\nu '(t))^2} e(\varphi _\nu (t)) dt\right|\leq \frac{1}{2\pi } \frac{|g_2(a)|}{\pi } = \frac{1}{2\pi ^2} \frac{a^{-\sigma -1} |\vartheta |}{\left|\nu - \vartheta \right|^3}. \]
Lemma 7.4.6 Estimating an sum

Let \(s = \sigma + i \tau \), \(\sigma ,\tau \in \mathbb {R}\). Let \(n\in \mathbb {Z}_{{\gt}0}\). Let \(a,b\in \mathbb {Z} + \frac{1}{2}\), \(b{\gt}a{\gt}\frac{|\tau |}{2\pi n}\). Write \(\varphi _\nu (t) = \nu t - \frac{\tau }{2\pi } \log t\). Then

\[ \frac{1}{2} \sum _{\nu = \pm n} \left. \frac{t^{-\sigma } e(\varphi _\nu (t))}{2\pi i \varphi _\nu '(t)}\right|_a^b = \left. \frac{(-1)^n t^{-s} \cdot \frac{\tau }{2\pi t}}{2\pi i \left(n^2 - \left(\frac{\tau }{2\pi t}\right)^2\right)}\right|_a^b. \]
Proof

Since \(e(\varphi _\nu (t)) = e(\nu t) t^{-i \tau } = (-1)^{\nu } t^{-i \tau }\) for any half-integer \(t\) and any integer \(\nu \),

\[ \left. \frac{t^{-\sigma } e(\varphi _\nu (t))}{2\pi i \varphi _\nu '(t)}\right|_a^b = \left. \frac{(-1)^{\nu } t^{-s}}{2\pi i \varphi _\nu '(t)}\right|_a^b \]

for \(\nu = \pm n\). Clearly \((-1)^{\nu } = (-1)^n\). Since \(\varphi _\nu '(t) = \nu - \alpha \) for \(\alpha = \frac{\tau }{2\pi t}\),

\[ \frac{1}{2} \sum _{\nu = \pm n} \frac{1}{\varphi _\nu '(t)} = \frac{1/2}{n - \alpha } + \frac{1/2}{- n - \alpha } = \frac{-\alpha }{\alpha ^2-n^2} = \frac{\alpha }{n^2-\alpha ^2}. \]

It is this easy step that gives us quadratic decay on \(n\). It is just as in the proof of van der Corput’s Process B in, say, [ 13 , I.6.3, Thm. 4 ] .

Proposition 7.4.1 Estimating a Fourier cosine integral
# Discussion

Let \(s = \sigma + i \tau \), \(\sigma \geq 0\), \(\tau \in \mathbb {R}\). Let \(a,b\in \mathbb {Z} + \frac{1}{2}\), \(b{\gt}a{\gt}\frac{|\tau |}{2\pi }\). Write \(\vartheta = \frac{\tau }{2\pi a}\). Then, for any integer \(n\geq 1\),

\[ \begin{aligned} \int _a^b t^{-s} \cos 2\pi n t\, dt & = \left. \left(\frac{(-1)^n t^{-s}}{2\pi i} \cdot \frac{\frac{\tau }{2\pi t}}{n^2 - \left(\frac{\tau }{2\pi t}\right)^2}\right)\right|_a^b \\ & \quad + \frac{a^{-\sigma -1}}{4\pi ^2}\, O^*\left(\frac{\sigma }{(n-\vartheta )^2} + \frac{\sigma }{(n+\vartheta )^2} + \frac{|\vartheta |}{|n-\vartheta |^3} + \frac{|\vartheta |}{|n+\vartheta |^3}\right).\end{aligned} \]
Proof

Write \(\cos 2\pi n t = \frac{1}{2} (e(n t) + e(-n t))\). Since \(n\geq 1\) and \(a{\gt}\frac{|\tau |}{2\pi }\), we know that \(a{\gt}\frac{|\tau |}{2 \pi n}\), and so we can apply Lemma 7.4.5 with \(\nu = \pm n\). We then apply Lemma 7.4.6 to combine the boundary contributions \(\left. \right|_a^b\) for \(\nu =\pm n\).

7.4.2 Approximating zeta(s)

We start with an application of Euler-Maclaurin.

Lemma 7.4.7 Identity for a partial sum of zeta(s) for integer b
# Discussion

Let \(b{\gt}0\), \(b\in \mathbb {Z}\). Then, for all \(s\in \mathbb {C}\setminus \{ 1\} \) with \(\Re s {\gt} 0\),

\begin{equation} \label{eq:abak1'} \sum _{n \leq b} \frac{1}{n^s} = \zeta (s) + \frac{b^{1-s}}{1-s} + \frac{b^{-s}}{2} + s \int _b^\infty \left(\{ y\} -\frac{1}{2}\right) \frac{dy}{y^{s+1}}. \end{equation}
2

Proof

Assume first that \(\Re s {\gt} 1\). By first-order Euler-Maclaurin,

\[ \sum _{n {\gt} b}\frac{1}{n^s} = \int _b^\infty \frac{dy}{y^s} + \int _b^\infty \left(\{ y\} -\frac{1}{2}\right) d\left(\frac{1}{y^s}\right). \]

Here \(\int _b^\infty \frac{dy}{y^s} = -\frac{b^{1-s}}{1-s}\) and \(d\left(\frac{1}{y^s}\right) = - \frac{s}{y^{s+1}} dy\). Hence, by \(\sum _{n\leq b} \frac{1}{n^s} = \zeta (s) - \sum _{n{\gt}b} \frac{1}{n^s}\) for \(\Re s {\gt} 1\),

\[ \sum _{n\leq b} \frac{1}{n^s} = \zeta (s) + \frac{b^{1-s}}{1-s} + \int _b^\infty \left(\{ y\} -\frac{1}{2}\right) \frac{s}{y^{s+1}} dy. \]

Since the integral converges absolutely for \(\Re s {\gt} 0\), both sides extend holomorphically to \(\{ s\in \mathbb {C}: \Re s{\gt}0, s\ne 1\} \); thus, the equation holds throughout that region.

Lemma 7.4.8 Identity for a partial sum of zeta(s)
# Discussion

Let \(b{\gt}0\), \(b\in \mathbb {Z} + \frac{1}{2}\). Then, for all \(s\in \mathbb {C}\setminus \{ 1\} \) with \(\Re s {\gt} 0\),

\begin{equation} \label{eq:abak1} \sum _{n\leq b} \frac{1}{n^s} = \zeta (s) + \frac{b^{1-s}}{1-s} + s \int _b^\infty \left(\{ y\} -\frac{1}{2}\right) \frac{dy}{y^{s+1}}. \end{equation}
3

Proof

Assume first that \(\Re s {\gt} 1\). By first-order Euler-Maclaurin and \(b\in \mathbb {Z}+\frac{1}{2}\),

\[ \sum _{n{\gt}b}\frac{1}{n^s} = \int _b^\infty \frac{dy}{y^s} + \int _b^\infty \left(\{ y\} -\frac{1}{2}\right) d\left(\frac{1}{y^s}\right). \]

Here \(\int _b^\infty \frac{dy}{y^s} = -\frac{b^{1-s}}{1-s}\) and \(d\left(\frac{1}{y^s}\right) = - \frac{s}{y^{s+1}} dy\). Hence, by \(\sum _{n\leq b} \frac{1}{n^s} = \zeta (s) - \sum _{n{\gt}b} \frac{1}{n^s}\) for \(\Re s {\gt} 1\),

\[ \sum _{n\leq b} \frac{1}{n^s} = \zeta (s) + \frac{b^{1-s}}{1-s} + \int _b^\infty \left(\{ y\} -\frac{1}{2}\right) \frac{s}{y^{s+1}} dy. \]

Since the integral converges absolutely for \(\Re s {\gt} 0\), both sides extend holomorphically to \(\{ s\in \mathbb {C}: \Re s{\gt}0, s\ne 1\} \); thus, the equation holds throughout that region.

Lemma 7.4.9 Estimate for a partial sum of \(\zeta (s)\)
# Discussion

Let \(b{\gt}a{\gt}0\), \(b\in \mathbb {Z} + \frac{1}{2}\). Then, for all \(s\in \mathbb {C}\setminus \{ 1\} \) with \(\sigma = \Re s {\gt} 0\),

\[ \sum _{n\leq a} \frac{1}{n^s} = -\sum _{a {\lt} n\leq b} \frac{1}{n^s} + \zeta (s) + \frac{b^{1-s}}{1-s} + O^*\left(\frac{|s|}{2 \sigma b^\sigma }\right). \]
Proof

By Lemma 7.4.8, \(\sum _{n\leq a} = \sum _{n\leq b} - \sum _{a {\lt} n\leq b}\), \(\left|\{ y\} -\frac{1}{2}\right| \leq \frac{1}{2}\) and \(\int _b^\infty \frac{dy}{|y^{s+1}|} = \frac{1}{\sigma b^\sigma }\).

Lemma 7.4.10 Poisson summation for a partial sum of \(\zeta (s)\)

Let \(a,b\in \mathbb {R}\setminus \mathbb {Z}\), \(b{\gt}a{\gt}0\). Let \(s\in \mathbb {C}\setminus \{ 1\} \). Define \(f:\mathbb {R}\to \mathbb {C}\) by \(f(y) = 1_{[a,b]}(y)/y^s\). Then

\[ \sum _{a {\lt} n\leq b} \frac{1}{n^s} = \frac{b^{1-s} - a^{1-s}}{1-s} + \lim _{N\to \infty } \sum _{n=1}^N (\widehat{f}(n) + \widehat{f}(-n)). \]
Proof

Since \(a\notin \mathbb {Z}\), \(\sum _{a {\lt} n\leq b} \frac{1}{n^s} = \sum _{n\in \mathbb {Z}} f(n)\). By Poisson summation (as in [ 10 , Thm. D.3 ] )

\[ \sum _{n\in \mathbb {Z}} f(n) = \lim _{N\to \infty } \sum _{n=-N}^N \widehat{f}(n) = \widehat{f}(0) + \lim _{N\to \infty } \sum _{n=1}^N (\widehat{f}(n) + \widehat{f}(-n)), \]

where we use the facts that \(f\) is in \(L^1\), of bounded variation, and (by \(a,b\not\in \mathbb {Z}\)) continuous at every integer. Now

\[ \widehat{f}(0) = \int _{\mathbb {R}} f(y) dy = \int _a^b \frac{dy}{y^s} = \frac{b^{1-s}-a^{1-s}}{1-s}. \]

We could prove these equations starting from Euler’s product for \(\sin \pi z\).

Lemma 7.4.11 Euler/Mittag-Leffler expansion for cosec
# Discussion

Let \(z\in \mathbb {C}\), \(z\notin \mathbb {Z}\). Then

\[ \frac{\pi }{\sin \pi z} = \frac{1}{z} + \sum _{n {\gt} 0} (-1)^n\left(\frac{1}{z - n} + \frac{1}{z + n}\right). \]
Proof

Let us start from the Mittag-Leffler expansion \(\pi \cot \pi s = \frac{1}{s} + \sum _n \left(\frac{1}{s-n} + \frac{1}{s+n}\right)\).

Applying the trigonometric identity \(\cot u - \cot \left(u + \frac{\pi }{2}\right) = \cot u + \tan u = \frac{2}{\sin 2 u}\) with \(u=\pi z/2\), and letting \(s = z/2\), \(s = (z+1)/2\), we see that

\[ \begin{aligned} \frac{\pi }{\sin \pi z} & = \frac{\pi }{2} \cot \frac{\pi z}{2} - \frac{\pi }{2} \cot \frac{\pi (z+1)}{2} \\ & = \frac{1/2}{z/2} + \sum _n \left(\frac{1/2}{\frac{z}{2} -n} + \frac{1/2}{\frac{z}{2} +n}\right) -\frac{1/2}{(z+1)/2} - \sum _n \left(\frac{1/2}{\frac{z+1}{2} -n} + \frac{1/2}{\frac{z+1}{2} +n}\right)\\ & = \frac{1}{z} + \sum _n \left(\frac{1}{z - 2 n} + \frac{1}{z + 2 n}\right) - \sum _n \left(\frac{1}{z - (2 n - 1)} + \frac{1}{z + (2 n - 1)}\right) \end{aligned} \]

after reindexing the second sum. Regrouping terms again, we obtain our equation.

Lemma 7.4.12 Euler/Mittag-Leffler expansion for cosec squared
# Discussion

Let \(z\in \mathbb {C}\), \(z\notin \mathbb {Z}\). Then

\[ \frac{\pi ^2}{\sin ^2 \pi z} = \sum _{n=-\infty }^\infty \frac{1}{(z-n)^2}. \]
Proof

Differentiate the expansion of \(\pi \cot \pi z\) term-by-term because it converges uniformly on compact subsets of \(\mathbb {C}\setminus \mathbb {Z}\). By \(\left(\pi \cot \pi z\right)' = - \frac{\pi ^2}{\sin ^2 \pi z}\) and \(\left(\frac{1}{z\pm n}\right)' = -\frac{1}{(z\pm n)^2}\), we are done.

Lemma 7.4.13 Estimate for an inverse cubic series
# Discussion

For \(\vartheta \in \mathbb {R}\) with \(0\leq |\vartheta |{\lt} 1\),

\[ \sum _n\left(\frac{1}{(n-\vartheta )^3} + \frac{1}{(n+\vartheta )^3}\right) \leq \frac{1}{(1-|\vartheta |)^3} + 2\zeta (3)-1. \]
Proof

Since \(\frac{1}{(n-\vartheta )^3} + \frac{1}{(n+\vartheta )^3}\) is even, we may replace \(\vartheta \) by \(|\vartheta |\). Then we rearrange the sum:

\[ \sum _{n=1}^\infty \left(\frac{1}{(n-|\vartheta |)^3} + \frac{1}{(n+|\vartheta |)^3}\right) = \frac{1}{(1-|\vartheta |)^3} + \sum _{n=1}^\infty \left(\frac{1}{\left(n+1-|\vartheta |\right)^3} + \frac{1}{\left(n+|\vartheta |\right)^3}\right). \]

We may write \((n+1-|\vartheta |)^3\), \((n+|\vartheta |)^3\) as \((n+\frac{1}{2}-t)^3\), \((n+\frac{1}{2} + t)^3\) for \(t = |\vartheta |-1/2\). Since \(1/u^3\) is convex, \(\frac{1}{(n+1/2-t)^3} + \frac{1}{(n+1/2+t)^3}\) reaches its maximum on \([-1/2,1/2]\) at the endpoints. Hence

\[ \sum _{n=1}^\infty \left(\frac{1}{\left(n+1-|\vartheta |\right)^3} + \frac{1}{\left(n+|\vartheta |\right)^3}\right) \leq \sum _{n=1}^\infty \left(\frac{1}{n^3} + \frac{1}{(n+1)^3}\right) = 2 \zeta (3)-1. \]
Lemma 7.4.14 Estimate for a Fourier sum

Let \(s = \sigma + i \tau \), \(\sigma \geq 0\), \(\tau \in \mathbb {R}\), with \(s\ne 1\). Let \(b{\gt}a{\gt}0\), \(a, b\in \mathbb {Z} + \frac{1}{2}\), with \(a{\gt}\frac{|\tau |}{2\pi }\). Define \(f:\mathbb {R}\to \mathbb {C}\) by \(f(y) = 1_{[a,b]}(y)/y^s\). Write \(\vartheta = \frac{\tau }{2\pi a}\), \(\vartheta _- = \frac{\tau }{2\pi b}\). Then

\[ \begin{aligned} \sum _n (\widehat{f}(n) + \widehat{f}(-n)) & = \frac{a^{-s} g(\vartheta )}{2 i} - \frac{b^{-s} g(\vartheta _-)}{2 i} + O^*\left(\frac{C_{\sigma ,\vartheta }}{a^{\sigma +1}}\right)\end{aligned} \]

with absolute convergence, where \(g(t) = \frac{1}{\sin \pi t} - \frac{1}{\pi t}\) for \(t\ne 0\), \(g(0)=0\), and

\begin{equation} \label{eq:defcsigth}C_{\sigma ,\vartheta }= \begin{cases} \frac{\sigma }{2} \left(\frac{1}{\sin ^2\pi \vartheta } - \frac{1}{(\pi \vartheta )^2}\right) + \frac{|\vartheta |}{2\pi ^2} \left(\frac{1}{(1-|\vartheta |)^3} + 2\zeta (3)-1\right) & \text{for $\vartheta \ne 0$,}\\ \sigma /6 & \text{for $\vartheta = 0$.}\end{cases}\end{equation}
4

Proof

By Proposition 7.4.1, multiplying by \(2\) (since \(e(-n t)+e(n t) = 2 \cos 2\pi n t\)),

\begin{align} \widehat{f}(n) + \widehat{f}(-n) & = \notag \frac{a^{-s}}{2\pi i} \frac{(-1)^{n+1} 2\vartheta }{n^2 - \vartheta ^2} - \frac{b^{-s}}{2\pi i} \frac{(-1)^{n+1} 2\vartheta _-}{n^2 - \vartheta _-^2} \\ & + \frac{a^{-\sigma -1}}{2\pi ^2} O^*\left(\frac{\sigma }{(n-\vartheta )^2} + \frac{\sigma }{(n+\vartheta )^2} + \frac{|\vartheta |}{(n-\vartheta )^3} + \frac{|\vartheta |}{(n+\vartheta )^3}\right),\label{eq:abaderrcontrib}\end{align}

where \(\vartheta _- = \tau /(2\pi b)\). Note \(|\vartheta _-|\leq |\vartheta |{\lt}1\). By the Lemma ??,

\[ \sum _n \frac{(-1)^{n+1} 2 z}{n^2 - z^2} = \frac{\pi }{\sin \pi z} - \frac{1}{z} \]

for \(z\ne 0\), while \(\sum _n \frac{(-1)^{n+1} 2 z}{n^2 - z^2} = \sum _n 0 = 0\) for \(z=0\). Moreover, by Lemmas 7.4.12 and 7.4.13, for \(\vartheta \ne 0\),

\[ \sum _n \left(\frac{\sigma }{(n-\vartheta )^2} + \frac{\sigma }{(n+\vartheta )^2}\right)\leq \sigma \cdot \left(\frac{\pi ^2}{\sin ^2 \pi \vartheta } - \frac{1}{\vartheta ^2}\right), \]
\[ \sum _n \left(\frac{|\vartheta |}{(n-\vartheta )^3} + \frac{|\vartheta |}{(n+\vartheta )^3}\right) \leq |\vartheta |\cdot \left(\frac{1}{(1-|\vartheta |)^3} + 2\zeta (3)-1\right). \]

If \(\vartheta =0\), then \(\sum _n \left(\frac{\sigma }{(n-\vartheta )^2} + \frac{\sigma }{(n+\vartheta )^2}\right) = 2 \sigma \sum _{n=1}^\infty \frac{1}{n^2} = \sigma \frac{\pi ^2}{3}\).

Proposition 7.4.2 Approximation of zeta(s) by a partial sum
# Discussion

Let \(s = \sigma + i \tau \), \(\sigma \geq 0\), \(\tau \in \mathbb {R}\), with \(s\ne 1\). Let \(a\in \mathbb {Z} + \frac{1}{2}\) with \(a{\gt}\frac{|\tau |}{2\pi }\). Then

\begin{equation} \label{eq:abadlondie} \zeta (s) = \sum _{n\leq a} \frac{1}{n^s} - \frac{a^{1-s}}{1-s} + c_\vartheta a^{-s} + O^*\left(\frac{C_{\sigma ,\vartheta }}{a^{\sigma +1}}\right), \end{equation}
8

where \(\vartheta = \frac{\tau }{2\pi a}\), \(c_\vartheta = \frac{i}{2} \left(\frac{1}{\sin \pi \vartheta } - \frac{1}{\pi \vartheta }\right)\) for \(\vartheta \ne 0\), \(c_0 =0\), and \(C_{\sigma ,\vartheta }\) is as in 4.

Proof

Assume first that \(\sigma {\gt}0\). Let \(b\in \mathbb {Z}+\frac{1}{2}\) with \(b{\gt}a\), and define \(f(y) = \frac{1_{[a,b]}(y)}{y^s}\). By Lemma 7.4.9 and Lemma 7.4.10,

\[ \sum _{n\leq a} \frac{1}{n^s} = \zeta (s) + \frac{a^{1-s}}{1-s} - \lim _{N\to \infty } \sum _{n=1}^N (\widehat{f}(n) + \widehat{f}(-n)) + O^*\left(\frac{2 |s|}{\sigma b^\sigma }\right). \]

We apply Lemma 7.4.14 to estimate \(\lim _{N\to \infty } \sum _{n=1}^N (\widehat{f}(n) + \widehat{f}(-n))\). We obtain

\[ \sum _{n\leq a} \frac{1}{n^s} = \zeta (s) + \frac{a^{1-s}}{1-s} - \frac{a^{-s} g(\vartheta )}{2 i} + O^*\left(\frac{C_{\sigma ,\vartheta }}{a^{\sigma +1}}\right) + \frac{b^{-s} g(\vartheta _-)}{2 i} + O^*\left(\frac{2 |s|}{\sigma b^\sigma }\right), \]

where \(\vartheta _- = \frac{\tau }{2\pi b}\) and \(g(t)\) is as in Lemma 7.4.14, and so \(-\frac{g(\vartheta )}{2 i} = c_\vartheta \). We let \(b\to \infty \) through the half-integers, and obtain 8, since \(b^{-\sigma }\to 0\), \(\vartheta _-\to 0\) and \(g(\vartheta _-)\to g(0) = 0\) as \(b\to \infty \).

Finally, the case \(\sigma =0\) follows since all terms in 8 extend continuously to \(\sigma =0\).

Remark 7.4.1
#

The term \(c_\vartheta a^{-s}\) in 8 does not seem to have been worked out before in the literature; the factor of \(i\) in \(c_\vartheta \) was a surprise. For the sake of comparison, let us note that, if \(a\geq x\), then \(|\vartheta |\leq 1/2\pi \), and so \(|c_\vartheta |\leq |c_{\pm 1/2\pi }| = 0.04291\dotsc \) and \(|C_{\sigma ,\vartheta }|\leq |C_{\sigma ,\pm 1/2\pi }|\leq 0.176\sigma +0.246\). While \(c_\vartheta \) is optimal, \(C_{\sigma ,\vartheta }\) need not be – but then that is irrelevant for most applications.

  1. The other one is the approximate functional equation.