Prime Number Theorem And ...

8 Primary explicit estimates

8.1 Definitions

In this section we define the basic types of primary estimates we will work with in the project.

Definition 8.1.1 Equation (2) of FKS2
#

\(E_ψ(x) = |ψ(x) - x| / x\)

Definition 8.1.2 Definitions 1, 5, FKS2
#

We say that \(E_ψ\) satisfies a classical bound with parameters \(A, B, C, R, x_0\) if for all \(x \geq x_0\) we have

\[ E_ψ(x) \leq A \left(\frac{\log x}{R}\right)^B \exp \left(-C \left(\frac{\log x}{R}\right)^{1/2}\right). \]

We say that it obeys a numerical bound with parameter \(ε(x_0)\) if for all \(x \geq x_0\) we have

\[ E_ψ(x) \leq ε(x_0). \]

8.2 A Lemma involving the Möbius Function

In this section we establish a lemma involving sums of the Möbius function.

Definition 8.2.1 Q
#

\(Q(x)\) is the number of squarefree integers \(\leq x\).

Definition 8.2.2 R
#

\(R(x) = Q(x) - x / \zeta (2)\).

Definition 8.2.3 M
#

\(M(x)\) is the summatory function of the Möbius function.

Sublemma 8.2.1 Mobius Lemma 1, initial step

For any \(x{\gt}0\),

\[ Q(x) = \sum _{k\leq x} M\left(\sqrt{\frac{x}{k}}\right) \]

.

Proof

We compute

\[ Q(x) = \sum _{n\leq x} \sum _{d: d^2|n} \mu (d) = \sum _{k, d: k d^2\leq x} \mu (d) \]

giving the claim.

Lemma 8.2.1 Mobius Lemma 1

For any \(x{\gt}0\),

\begin{equation} \label{eq:antenor} R(x) = \sum _{k\leq x} M\left(\sqrt{\frac{x}{k}}\right) - \int _0^x M\left(\sqrt{\frac{x}{u}}\right) du. \end{equation}
1

Proof

The equality is immediate from Theorem 8.2.1 and exchanging the order of \(\sum \) and \(\int \), as is justified by \(\sum _n |\mu (n)|\int _0^{x/n^2} du \leq \sum _n x/n^2 {\lt} \infty \))

\[ \int _0^x M\left(\sqrt{\frac{x}{u}}\right) du = \int _0^x \sum _{n\leq \sqrt{\frac{x}{u}}} \mu (n) du = \sum _n \mu (n) \int _0^{\frac{x}{n^2}} du = x \sum _n \frac{\mu (n)}{n^2} = \frac{x}{\zeta (2)}. \]

Since our sums start from \(1\), the sum \(\sum _{k\leq K}\) is empty for \(K=0\).

Sublemma 8.2.2 Mobius Lemma 2 - first step

For any \(K \leq x\),

\[ \sum _{k\leq x} M\left(\sqrt{\frac{x}{k}}\right) = \sum _{k\leq K} M\left(\sqrt{\frac{x}{k}}\right) + \sum _{K {\lt} k\leq x+1} \int _{k-\frac{1}{2}}^{k+\frac{1}{2}} M\left(\sqrt{\frac{x}{k}}\right) du. \]
Proof

This is just splitting the sum at \(K\).

Sublemma 8.2.3 Mobius Lemma 2 - second step

For any \(K \leq x\), for \(f(u) = M(\sqrt{x/u})\),

\[ \sum _{K {\lt} k\leq x+1} \int _{k-\frac{1}{2}}^{k+\frac{1}{2}} f(u) du = \int _{K+\frac{1}{2}}^{\lfloor x\rfloor + \frac{3}{2}} f(u) du = \int _{K+\frac{1}{2}}^x f(u) du, \]
Proof

This is just splitting the integral at \(K\), since \(f(u) = M(\sqrt{x/u}) = 0\) for \(x{\gt}u\).

For any \(x{\gt}0\) and any integer \(K\geq 0\),

\begin{equation} \label{eq:singdot} \begin{aligned} R(x) & = \sum _{k\leq K} M\left(\sqrt{\frac{x}{k}}\right) - \int _0^{K+\frac{1}{2}} M\left(\sqrt{\frac{x}{u}}\right) du \\ & -\sum _{K {\lt} k\leq x+1} \int _{k-\frac{1}{2}}^{k+\frac{1}{2}} \left(M\left(\sqrt{\frac{x}{u}}\right) -M\left(\sqrt{\frac{x}{k}}\right)\right) du \end{aligned} \end{equation}
2

Proof

We split into two cases. If \(K{\gt}x\), the second line of 2 is empty, and the first one equals 1, by \(M(t)=0\) for \(t{\lt}1\), so 2 holds.

Now suppose that \(K \leq x\). Then we combine Sublemma 8.2.2 and Sublemma 8.2.3 with Lemma 8.2.1 to give the claim.

8.3 The estimates of Fiori, Kadiri, and Swidinsky

In this section we establish the primary results of Fiori, Kadiri, and Swidinsky [ 13 ] .

TODO: reorganize this blueprint and add proofs.

Let \(H_0\) denote a verification height for RH. Let \(10^9/H_0≤ k \leq 1\), \(t {\gt} 0\), \(H \in [1002, H_0)\), \(α {\gt} 0\), \(δ ≥ 1\), \(\eta _0 = 0.23622\), \(1 + \eta _0 \leq \mu \leq 1+\eta \), and \(\eta \in (\eta _0, 1/2)\) be fixed. Let \(\sigma {\gt} 1/2 + d / \log H_0\). Then for any \(T \geq H_0\), one has

\[ N(\sigma ,T) \leq (T-H) \log T / (2\pi d) * \log ( 1 + CC_1(\log (kT))^{2\sigma } (\log T)^{4(1-\sigma )} T^{8/3(1-\sigma )} / (T-H) ) + CC_2 * \log ^2 T / 2 \pi d \]

and

\[ N(\sigma ,T) \leq \frac{CC_1}{2\pi d} (\log kT)^{2\sigma } (\log T)^{5-4*\sigma } T^{8/3(1-\sigma )} + CC_2 * \log ^2 T / 2 \pi d \]

.

Proof
Definition 8.3.1 FKS Corollary 2.9
#

For each \(\sigma _1, \sigma _2, \tilde c_1, \tilde c_2\) given in Table 8, we have \(N(\sigma ,T) \leq \tilde c_1 T^{p(\sigma )} \log ^{q(\sigma )} + \tilde c_2 \log ^2 T\) for \(\sigma _1 \leq \sigma \leq \sigma _2\) with \(p(\sigma ) = 8/3 (1-\sigma )\) and \(q(σ) = 5-2\sigma \).

Theorem 8.3.2 FKS Lemma 2.1

If \(|N(T) - (T/2\pi \log (T/2\pi e) + 7/8)| \leq R(T)\) then \(\sum _{U \leq \gamma {\lt} V} 1/\gamma \leq B_1(U,V)\).

Proof
Theorem 8.3.3 FKS Corollary 2.3

For each pair \(T_0,S_0\) in Table 1 we have, for all \(V {\gt} T_0\), \(\sum _{0 {\lt} \gamma {\lt} V} 1/\gamma {\lt} S_0 + B_1(T_0,V)\).

Proof
Theorem 8.3.4 FKS Lemma 2.5

Let \(T_0 \geq 2\) and \(\gamma {\gt} 0\). Assume that there exist \(c_1, c_2, p, q, T_0\) for which one has a zero density bound. Assume \(\sigma \geq 5/8\) and \(T_0 \leq U {\lt} V\). Then \(s_0(σ,U,V) \leq B_0(\sigma ,U,V)\).

Proof
Theorem 8.3.5 FKS Remark 2-6-a
#

\(\Gamma (3,x) = (x^2 + 2(x+1)) e^{-x}\).

Proof
Theorem 8.3.6 FKS Remark 2-6-b
#

For \(s{\gt}1\), one has \(\Gamma (s,x) \sim x^{s-1} e^{-x}\).

Proof
Theorem 8.3.7 FKS Theorem 3.1
#

Let \(x {\gt} e^{50}\) and \(50 {\lt} T {\lt} x\). Then \(E_\psi (x) \leq \sum _{|\gamma | {\lt} T} |x^{\rho -1}/\rho | + 2 \log ^2 x / T\).

Proof
Theorem 8.3.8 FKS Theorem 3.2
#

For any \(\alpha \in (0,1/2]\) and \(\omega \in [0,1]\) there exist \(M, x_M\) such that for \(\max (51, \log x) {\lt} T {\lt} (x^\alpha -2)/5\) and some \(T^* \in [T, 2.45 T]\),

\[ |\psi (x) - (x - \sum _{|\gamma | \leq T^*} x^\rho /\rho )| ≤ M x / T * log^{1-\omega } x \]

for all \(x ≥ x_M\).

Proof
Theorem 8.3.9 FKS Proposition 3.4
#

Let \(x {\gt} e^{50}\) and \(3 \log x {\lt} T {\lt} \sqrt{x}/3\). Then \(E_\psi (x) ≤ \sum _{|\gamma | {\lt} T} |x^{\rho -1}/\rho | + 2 \log ^2 x / T\).

Proof
Theorem 8.3.10 FKS Proposition 3.6

Let \(\sigma _1 \in (1/2,1)\) and let \((T_0,S_0)\) be taken from Table 1. Then \(\Sigma _0^{\sigma _1} ≤ 2 x^{-1/2} (S_0 + B_1(T_0,T)) + (x_1^{\sigma _1-1} - x^{-1/2}) B_1(H_0,T)\).

Proof
Theorem 8.3.11 FKS equation (3.13)

\(\Sigma _a^b = 2 * \sum _{H_a ≤ \gamma {\lt} T; a \leq \beta {\lt} b} \frac{x^{\beta -1}}{\gamma }\).

Proof
Theorem 8.3.12 FKS Remark 3.7
#

If \(\sigma {\lt} 1 - 1/R \log H_0\) then \(H_σ = H_0\).

Proof
Theorem 8.3.13 FKS Proposition 3.8

Let \(N \geq 2\) be an integer. If \(5/8 \leq \sigma _1 {\lt} \sigma _2 \leq 1\), \(T \geq H_0\), then \(\Sigma _{\sigma _1}^{\sigma _2} ≤ 2 x^{-(1-\sigma _1)+(\sigma _2-\sigma _1/N)}B_0(\sigma _1, H_{\sigma _1}, T) + 2 x^{(1-\sigma _1)} (1 - x^{-(\sigma _2-\sigma _1)/N}) \sum _{n=1}^{N-1} B_0(\sigma ^{(n)}, H^{(n)}, T) x^{(\sigma _2-\sigma _1) (n+1)/N}\).

Proof
Theorem 8.3.14 FKS Corollary 3.10
#

If \(\sigma _1 \geq 0.9\) then \(\Sigma _{\sigma _1}^{\sigma _2} \leq 0.00125994 x^{\sigma _2-1}\).

Proof

Let \(5/8 {\lt} \sigma _2 \leq 1\), \(t_0 = t_0(\sigma _2,x) = \max (H_{\sigma _2}, \exp ( \sqrt{\log x}/R))\) and \(T {\gt} 0\). Let \(K \geq 2\) and consider a strictly increasing sequence \((t_k)_{k=0}^K\) such that \(t_k = T\). Then \(\Sigma _{\sigma _2}^1 ≤ 2 N(\sigma _2,T) x^{-1/R\log t_0}/t_0\) and \(\Sigma _{\sigma _2}^1 ≤ 2 ((\sum _{k=1}^{K-1} N(\sigma _2, t_k) (x^{-1/R\log t_{k-1}} / t_{k-1} - x^{-1/(R \log t_k)}/t_k)) + x^{-1/R \log t_{K-1}}/t_{K-1} N(\sigma _2,T))\).

Proof
Theorem 8.3.16 FKS Corollary 3.12

Let \(5/8 {\lt} \sigma _2 \leq 1\), \(t_0 = t_0(\sigma _2, x) = \max \left(H_{\sigma _2}, \exp \left(\sqrt{\frac{\log x}{R}}\right)\right)\), \(T {\gt} t_0\). Let \(K \geq 2\), \(\lambda = (T/t_0)^{1/K}\), and consider \((t_k)_{k=0}^K\) the sequence given by \(t_k = t_0 \lambda ^k\). Then

\[ \Sigma ^1_{\sigma _2} = 2 \sum _{\substack {0 {\lt} \gamma {\lt} T \\ \sigma _2 \leq \beta {\lt} 1}} \frac{x^{\beta -1}}{\gamma } \leq \varepsilon _4(x, \sigma _2, K, T), \]

where

\[ \varepsilon _4(x, \sigma _2, K, T) = 2 \sum _{k=1}^{K-1} \frac{x^{-\frac{1}{R \log t_k}}}{t_k} \left( \tilde{N}(\sigma _2, t_{k+1}) - \tilde{N}(\sigma _2, t_k) \right) + 2\tilde{N}(\sigma _2, t_1) \frac{x^{-\frac{1}{R(\log t_0)}}}{t_0}, \]

and \(\tilde{N}(\sigma , T)\) satisfy (ZDB) \(N(\sigma , T) \leq \tilde{N}(\sigma , T)\).

Proof
Theorem 8.3.17 FKS Proposition 3-14

Fix \(K \geq 2\) and \(c {\gt} 1\), and set \(t_0\), \(T\), and \(\sigma _2\) as functions of \(x\) defined by

\begin{equation} t_0 = t_0(x) = \exp \left(\sqrt{\frac{\log x}{R}}\right), \quad T = t_0^c, \quad \text{and} \quad \sigma _2 = 1 - \frac{2}{R \log t_0}. \end{equation}
3

Then, with \(\varepsilon _4(x, \sigma _2, K, T)\) as defined in (3.22), we have that as \(x \to \infty \),

\begin{equation} \varepsilon _4(x, \sigma _2, K, T) = (1 + o(1)) C \frac{(\log t_0)^{3 + \frac{4}{R \log t_0}}}{t_0^2}, \quad \text{with } C = 2c_1 e^{\frac{16w_1}{3R}} w_1^3, \text{ and } w_1 = 1 + \frac{c-1}{K}, \end{equation}
4

where \(c_1\) is an admissible value for (ZDB) on some interval \([\sigma _1, 1]\). Moreover, both \(\varepsilon _4(x, \sigma _2, K, T)\) and \(\frac{\varepsilon _4(x, \sigma _2, K, T) t_0^2}{(\log t_0)^3}\) are decreasing in \(x\) for \(x {\gt} \exp (Re^2)\).

Proof

For any \(x_0\) with \(\log x_0 {\gt} 1000\), and all \(0.9 {\lt} \sigma _2 {\lt} 1\), \(2 \leq c \leq 30\), and \(N, K \geq 1\) the formula \(\varepsilon (x_0) := \varepsilon (x_0, \sigma _2, c, N, K)\) as defined in (4.1) gives an effectively computable bound

\[ E_\psi (x) \leq \varepsilon (x_0) \quad \text{for all } x \geq x_0. \]
Proof
Theorem 8.3.19 FKS Theorem 1.1b
#

Moreover, a collection of values, \(\varepsilon (x_0)\) computed with well chosen parameters are provided in Table 5.

Proof
Theorem 8.3.20 FKS Lemma 5.2
#

For all \(0 {\lt} \log x \leq 2100\) we have that

\[ E_\psi (x) \leq 2(\log x)^{3/2} \exp \left(-0.8476836\sqrt{\log x}\right). \]
Proof
Theorem 8.3.21 FKS Lemma 5.3
#

For all \(2100 {\lt} \log x \leq 200000\) we have that

\[ E_\psi (x) \leq 9.22022(\log x)^{3/2} \exp \left(-0.8476836\sqrt{\log x}\right). \]
Proof
Theorem 8.3.22 FKS Theorem 1.2b
#

If \(\log x_0 \geq 1000\) then we have an admissible bound for \(E_\psi \) with the indicated choice of \(A(x_0)\), \(B = 3/2\), \(C = 2\), and \(R = 5.5666305\).

Proof
Theorem 8.3.23 FKS1 Corollary 1.3
#

For all x > 2 we have \(E_ψ(x) \leq 121.096 (\log x/R)^{3/2} \exp (-2 \sqrt{\log x/R})\) with \(R = 5.5666305\).

Proof
Theorem 8.3.24 FKS1 Corollary 1.4
#

For all x > 2 we have \(E_ψ(x) \leq 9.22022(\log x)^{3/2} \exp (-0.8476836 \sqrt{\log x})\).

Proof

TODO.

8.4 Numerical content of BKLNW Appendix A

Purely numerical calculations from Appendix A of [ 2 ] . This is kept in a separate file from the main file to avoid heavy recompilations. Because of this, this file should not import any other files from the PNT+ project, other than further numerical data files.

Sublemma 8.4.1 BKLNW Table 8 vs expanded Table 8
# Discussion

The value of \(\varepsilon (b)\) arising from Table 8 of [ 2 ] is weaker than that from the expanded version of Table 8 available in the arXiv.

Proof

Routine computation.

8.5 Appendix A of BKLNW

In this file we record the results from Appendix A of [ 2 ] . In this appendix, the authors derive explicit estimates on the error term in the prime number theorem for the Chebyshev function \(\psi \) assuming various inputs on the zeros of the Riemann zeta function, including a zero-density estimate, a classical zero-free region, and numerical verification of RH up to some height.

Sublemma 8.5.1 Equation (A.7)
#

Let \(x \geq e^{1000}\) and \(T\) satisfies \(50 {\lt} T \leq x\). Then

\[ \frac{\psi (x) - x}{x} = \sum _{|\gamma | {\lt} T} \frac{x^{\rho - 1}}{\rho } + \mathcal{O}^*\left(\frac{2(\log x)^2}{T}\right) \]

where \(A = \mathcal{O}^*(B)\) means \(|A| \leq B\).

Proof

See [ 11 , Theorem 1.3 ] .

Definition 8.5.1 Equation (A.8)
#

We denote

\[ s_0(b, T) = \frac{2b^2}{T}. \]
Definition 8.5.2 Definition of Sigma 1
#

We denote

\[ \Sigma _1 := \sum _{|\gamma | \leq T; \beta {\lt} 1 - \delta } \frac{x^{\rho - 1}}{\rho } \]
Definition 8.5.3 Definition of Sigma 2
#

We denote

\[ \Sigma _2 := \sum _{|\gamma | \leq T; \beta \geq 1 - \delta } \frac{x^{\rho - 1}}{\rho } \]
Sublemma 8.5.2 Equation (A.9)

We have

\[ \sum _{|\gamma | {\lt} T} \frac{x^{\rho -1}}{\rho } = \Sigma _1 + \Sigma _2 \]
Proof

Follows directly from the definitions of Σ₁ and Σ₂.

Sublemma 8.5.3 Equation (A.10)
#

We have

\[ |\Sigma _1| \leq x^{-\delta } \left(\frac{1}{2\pi }(\log (T/2\pi ))^2 + 1.8642\right). \]
Proof

See [ 21 , Lemma 2.10 ] .

Definition 8.5.4 Equation (A.11)
#

We denote

\[ s_1(b, \delta , T) = e^{-\delta b} \left(\frac{1}{2\pi }(\log (T/2\pi ))^2 + 1.8642\right). \]
Sublemma 8.5.4 Equation (A.12)

We have

\[ |\Sigma _2| \leq 2 \sum _{k=0}^{K-1} \frac{\lambda ^{k+1} x^{-\frac{1}{R \log (T/\lambda ^k)}}}{T} N\left(1 - \delta , \frac{T}{\lambda ^k}\right). \]
Proof

An argument of Pintz [ s employed. The interval \([0,T]\) is split into subintervals \([T/\lambda ^{k+1}, T/\lambda ^k]\) where \(\lambda {\gt} 1\), \(0 \leq k \leq K-1\), and \(K = \lfloor \frac{\log T/H}{\log \lambda } \rfloor + 1\). Then use the zero-free region to bound \(\Re \rho \).

Sublemma 8.5.5 Equation (A.13)

We have

\[ |\Sigma _2| \leq \frac{2\lambda }{T} \sum _{k=0}^{K-1} \lambda ^k x^{-\frac{1}{R \log (T/\lambda ^k)}} \left(c_1 \left(\frac{T}{\lambda ^k}\right)^{\frac{8\delta }{3}} (\log (T/\lambda ^k))^{3+2\delta } + c_2 (\log (T/\lambda ^k))^2\right). \]
Proof

Inserting (A.6) into the result of (A.12).

Definition 8.5.5 Equation (A.14)

We denote

\begin{align} s_2(b, \lambda , K, T) & = \frac{2\lambda }{T} \sum _{k=0}^{K-1} \exp \left(k \log \lambda - \frac{b}{R(\log T - k \log \lambda )}\right) \\ & \quad \times \left(c_1 \left(\frac{T}{\lambda ^k}\right)^{\frac{8\delta }{3}} (\log (T/\lambda ^k))^{3+2\delta } + c_2 (\log (T/\lambda ^k))^2\right). \notag \end{align}

Let \(b_1, b_2\) satisfy \(1000 \leq b_1 {\lt} b_2\). Let \(0.001 \leq \delta \leq 0.025\), \(\lambda {\gt} 1\), \(H {\lt} T {\lt} e^{b_1}\), and \(K = \left\lfloor \frac{\log \frac{T}{H}}{\log \lambda } \right\rfloor + 1\). Then for all \(x \in [e^{b_1}, e^{b_2}]\)

\[ \left|\frac{\psi (x) - x}{x}\right| \leq s_0(b_2, T) + s_1(b_1, \delta , T) + s_2(b_1, \delta , \lambda , K, T), \]

where \(s_0, s_1, s_2\) are respectively defined in Definitions 8.5.1, 8.5.4, and 8.5.5

Proof

Follows from combining Sublemmas ??, ??, ??, and ??.

Definition 8.5.6 Equation (A.16)

We define

\[ k(\sigma , x_0) = \left( \exp \left(\frac{10 - 16 \sigma }{3} \left( \frac{\log x_0}{R} \right)^{1/2} \right) \left( \frac{\log x_0}{R} \right)^{5 - 2 \sigma } \right)^{-1}. \]
Definition 8.5.7 Equation (A.17)

We define

\[ c_3(\sigma , x_0) = 2 \exp \left( -2 \left( \frac{\log x_0}{R} \right)^{1/2} \right) (\log x_0)^2 k(\sigma , x_0). \]
Definition 8.5.8 Equation (A.18)

We define

\[ c_4(\sigma , x_0) = x_0^{\sigma - 1} \left( \frac{2 \log x_0}{\pi R} + 1.8642 \right) k(\sigma , x_0). \]
Definition 8.5.9 Equation (A.19)

We define

\[ c_5(\sigma , x_0) = 8.01 \cdot c_2(\sigma ) \exp \left( -2 \left( \frac{\log x_0}{R} \right)^{1/2} \right) \frac{\log x_0}{R} k(\sigma , x_0). \]
Definition 8.5.10 Equation (A.20)

We define

\[ A(\sigma , x_0) = 2.0025 \cdot 25^{-2 \sigma } \cdot c_1(\sigma ) + c_3(\sigma , x_0) + c_4(\sigma , x_0) + c_5(\sigma , x_0). \]

We define

\[ B = 5/2 - \sigma , \]

and

\[ C = 16 \sigma /3 - \frac{10}{3}. \]

Let \(x_0 \geq 1000\) and let \(\sigma \in [0.75, 1)\). For all \(x \geq e^{x_0}\),

\[ \frac{|\psi (x) - x|}{x} \leq A \left( \frac{\log x}{R} \right)^B \exp \left( -C \left( \frac{\log x}{R} \right)^{1/2} \right) \]

where \(A\), \(B\), and \(C\) are defined in Definitions 8.5.10, 8.5.11.

Proof

This is proven by Platt and Trudgian [ 19 ]

Theorem 8.5.3 Equation (A.26)
#

For \(100 \leq x \leq 10^{19}\), one has

\[ | (x - \psi (x)) / \sqrt{x} | \leq 0.94. \]
Proof

This follows from Theorem 9.5.1. TODO: create a primary Buthe section to place this result

Lemma 8.5.1 Lemma 15
# Discussion

Let \(B_0\), \(B\), and \(c\) be positive constants such that

\begin{equation} \tag {A.27} |(x-\psi (x))/\sqrt{x}| ≤ c \hbox{ for all } B_0 {\lt} x \leq B \end{equation}
6

is known. Furthermore, assume for every \(b_0 {\gt} 0\) there exists \(\varepsilon (b_0) {\gt} 0\) such that

\begin{equation} \tag {A.28} |\psi (x) - x| \leq \varepsilon (b_0) x \quad \text{for all } x \geq e^{b_0}. \end{equation}
7

Let \(b\) be positive such that \(e^b \in (B_0, B]\). Then, for all \(x \geq e^b\) we have

\begin{equation} \tag {A.29} \left|\frac{\psi (x) - x}{x}\right| \leq \max (\frac{c}{e^{\frac{b}{2}}}, \varepsilon (\log B)).\end{equation}
8

Proof

Multiplying both sides of ?? by \(\frac{1}{\sqrt{x}}\) gives

\[ \left|\frac{\psi (x) - x}{x}\right| \leq \frac{c}{e^{\frac{b}{2}}} \quad \text{for all } e^b \leq x \leq B \]

as \(\frac{1}{\sqrt{x}} \leq \frac{1}{e^{\frac{b}{2}}}\). Then, for \(x \geq B\) we apply ?? with \(b_0 = \log B\). Combining these bounds, we derive ??.

Corollary 8.5.1 Corollary 15.1
#

Let \(b\) be a positive constant such that \(\log 11 {\lt} b \leq 19 \log (10)\). Then we have

\[ \left|\frac{\psi (x) - x}{x}\right| \leq \max \left\{ \frac{0.94}{e^{\frac{b}{2}}}, \varepsilon (19 \log 10)\right\} \quad \text{for all } x \geq e^b. \]

Note that by Table 8, we have \(\varepsilon (19 \log 10) = 1.93378 \cdot 10^{-8}\).

Proof

By [ 4 , (1.5) ] , (A.27) holds with \(B_0 = 11\), \(B = 10^{19}\), and \(c = 0.94\). Thus we may apply Lemma 8.5.1 with \(B_0 = 11\), \(B = 10^{19}\), and \(c = 0.94\) from [ 4 , (1.5) ] to obtain the claim.

Definition 8.5.12 Logan’s function
#

We define Logan’s function

\[ \ell _{c,\varepsilon }(\xi ) = \frac{c}{\sinh c} \frac{\sin (\sqrt{(\xi \varepsilon )^2 - c^2})}{\sqrt{(\xi \varepsilon )^2 - c^2}}. \]
Definition 8.5.13 Fourier transform of Logan’s function
#

We define

\[ \eta _{c,\varepsilon }(\xi ) = \frac{1}{2\pi } \int _{\mathbb {R}} e^{-it\xi } ℓ_{c,\varepsilon }(t) \, dt. \]
Definition 8.5.14 Definition of Buthe’s function mu
#

We define the auxiliary functions

\begin{align*} \mu _{c,\varepsilon }(t) & = \begin{cases} -\int _t^{\infty } \eta _{c,\varepsilon }(\tau ) d\tau & t {\lt} 0, \\ -\mu _{c,\varepsilon }(-t) & t {\gt} 0, \\ 0 & t = 0, \end{cases}\\ \nu _{c,\varepsilon }(t) & = \int _{-\infty }^t \mu _{c,\varepsilon }(\tau ) d\tau . \end{align*}

Let \(0 {\lt} \varepsilon {\lt} 10^{-3}\), \(c \geq 3\), \(x_0 \geq 100\) and \(\alpha \in [0, 1)\) such that the inequality

\[ B_0 := \frac{\varepsilon e^{-\varepsilon } x_0 |\nu _c(\alpha )|}{2(\mu _c)_+(\alpha )} {\gt} 1 \]

holds. We denote the zeros of the Riemann zeta function by \(\rho = \beta + i\gamma \) with \(\beta , \gamma \in \mathbb {R}\). Then, if \(\beta = \frac{1}{2}\) holds for \(0 {\lt} \gamma \leq \frac{c}{\varepsilon }\), the inequality

\[ |\psi (x) - x| \leq x e^{\varepsilon \alpha }(\mathcal{E}_1 + \mathcal{E}_2 + \mathcal{E}_3) \]

holds for all \(x \geq e^{\varepsilon \alpha } x_0\), where

\begin{align*} \mathcal{E}_1 & = e^{2\varepsilon } \log (e^\varepsilon x_0) \left[\frac{2\varepsilon |\nu _c(\alpha )|}{\log B_0} + \frac{2.01\varepsilon }{\sqrt{x_0}} + \frac{\log \log (2x_0^2)}{2x_0}\right] + e^{\varepsilon \alpha } - 1, \\ \mathcal{E}_2 & = 0.16 \frac{1 + x_0^{-1}}{\sinh c} e^{0.71\sqrt{c\varepsilon }} \log \left(\frac{c}{\varepsilon }\right), \quad \text{and} \\ \mathcal{E}_3 & = \frac{2}{\sqrt{x_0}} \sum _{0 {\lt} \gamma {\lt} \frac{c}{\varepsilon }} \frac{\ell _{c,\varepsilon }(\gamma )}{\gamma } + \frac{2}{x_0}. \end{align*}

The \(\nu _c(\alpha ) = \nu _{c,1}(\alpha )\) and \(\mu _c(\alpha ) = \mu _{c,1}(\alpha )\) where \(\nu _{c,\varepsilon }(\alpha )\) and \(\mu _{c,\varepsilon }(\alpha )\) are defined by [ 3 , p. 2490 ] .

Proof

This is [ 3 , Theorem 1 ] .

Note: This thesis of Bhattacharjee [ 1 ] will be a good resource when formalizing this result.

Theorem 8.5.5 Theorem 2
#

If \(b{\gt}0\) then \(|\psi (x) - x| \leq \varepsilon (b) x\) for all \(x \geq \exp (b)\), where \(\varepsilon \) is as in [ 2 , Table 8 ] .

Proof

Values for \(20 \leq b \leq 2000\) are computed using Theorem ??, and values for \(2500 \leq b \leq 25000\) are computed as using Theorem 8.5.1. For \(b {\gt} 25000\) we use Theorem 8.5.2.

Corollary 8.5.2 Corollary 15.1, alternative version

Let \(b\) be a positive constant such that \(\log 11 {\lt} b \leq 19 \log (10)\). Then we have

\[ \left|\frac{\psi (x) - x}{x}\right| \leq \max \left\{ \frac{0.94}{e^{\frac{b}{2}}}, 1.93378 \cdot 10^{-8}\right\} \quad \text{for all } x \geq e^b. \]
Proof

From Table 8 we have \(\varepsilon (19 \log 10) = 1.93378 \cdot 10^{-8}\). Now apply Corollary 8.5.1 and Theorem ??.

8.6 Chirre-Helfgott’s estimates for sums of nonnegative arithmetic functions

We record some estimates from [ 6 ] for summing non-negative functions, with a particular interest in estimating \(\psi \).

8.6.1 Fourier-analytic considerations

Some material from [ 6 , Section 2 ] , slightly rearranged to take advantage of existing results in the repository.

Sublemma 8.6.1 CH2 Proposition 2.3, substep 1
# Discussion

Let \(a_n\) be a sequence with \(\sum _{n{\gt}1} \frac{|a_n|}{n \log ^\beta n} {\lt} \infty \) for some \(\beta {\gt} 1\). Write \(G(s)= \sum _n a_n n^{-s} - \frac{1}{s-1}\) for \(\mathrm{Re} s {\gt} 1\). Let \(\varphi \) be absolutely integrable, supported on \([-1,1]\), and has Fourier decay \(\hat\psi (y) = O(1/|y|^\beta )\). Then for any \(x{\gt}0\) and \(\sigma {\gt} 1\)

\[ \frac{1}{2\pi } \sum a_n \frac{x}{n^\sigma } \hat\psi (\frac{T}{2\pi } \log \frac{n}{x} ) = \frac{1}{2\pi T} \int _{-T}^{T} \varphi (\frac{t}{T}) G(\sigma +it) x^{it}\ dt + \int _{-T \log x/2\pi }^\infty e^{-y(\sigma -1)} \hat\varphi (y)\ dy) \frac{x^{2-\sigma }}{T}. \]
Proof

Use Lemma 2.1.1 and Lemma 2.1.2, similar to the proof of ‘limiting_fourier_aux‘.

Proposition 8.6.1 CH2 Proposition 2.3
# Discussion

Let \(a_n\) be a sequence with \(\sum _{n{\gt}1} \frac{|a_n|}{n \log ^\beta n} {\lt} \infty \) for some \(\beta {\gt} 1\). Assume that \(\sum _n a_n n^{-s} - \frac{1}{s-1}\) extends continuously to a function \(G\) defined on \(1 + i[-T,T]\). Let \(\varphi \) be absolutely integrable, supported on \([-1,1]\), and has Fourier decay \(\hat\varphi (y) = O(1/|y|^\beta )\). Then for any \(x{\gt}0\),

\[ \frac{1}{2\pi } \sum a_n \frac{x}{n} \hat\varphi (\frac{T}{2\pi } \log \frac{n}{x} ) = \frac{1}{2\pi i T} \int _{1-iT}^{1+iT} \varphi (\frac{s-1}{iT}) G(s) x^{s}\ ds + (\varphi (0) - \int _{-\infty }^{-T \log x/2\pi } \hat\varphi (y)\ dy) \frac{x}{T}. \]
Proof

Apply Sublemma 8.6.1 and take the limit as \(\sigma \to 1^+\), using the continuity of \(G\) and the dominated convergence theorem, as well as the Fourier inversion formula.

Definition 8.6.1 CH2 Definition of \(S\), (2.8)
#

\(S_\sigma (x)\) is equal to \(\sum _{n \leq x} a_n / n^\sigma \) if \(\sigma {\lt} 1\) and \(\sum _{n \geq x} a_n / n^\sigma \) if \(\sigma {\gt} 1\).

Definition 8.6.2 CH2 Definition of \(I\), (2.9)
#

\(I_\lambda (u) = 1_{[0,\infty )}(\mathrm{sgn}(\lambda )u) e^{-\lambda u}\).

Sublemma 8.6.2 CH2 Equation (2.10)
# Discussion

\(S_\sigma (x) = x^{-\sigma } \sum _n a_n \frac{x}{n} I_\lambda ( \frac{T}{2\pi } \log \frac{n}{x} )\) where \(\lambda = 2\pi (\sigma -1)/T\).

Proof

Routine manipulation.

Proposition 8.6.2 CH2 Proposition 2.4, upper bound

Let \(a_n\) be a non-negative sequence with \(\sum _{n{\gt}1} \frac{|a_n|}{n \log ^\beta n} {\lt} \infty \) for some \(\beta {\gt} 1\). Assume that \(\sum _n a_n n^{-s} - \frac{1}{s-1}\) extends continuously to a function \(G\) defined on \(1 + i[-T,T]\). Let \(\varphi _+\) be absolutely integrable, supported on \([-1,1]\), and has Fourier decay \(\hat\varphi _+(y) = O(1/|y|^\beta )\). Assume \(I_\lambda (y) \leq \hat\varphi _+(y)\) for all \(y\). Then for any \(x\geq 1\) and \(\sigma \neq 1\),

\[ S_\sigma (x) \leq \frac{2\pi x^{1-\sigma }}{T} \varphi _+(0) + \frac{x^{-\sigma }}{T} \int _{-T}^T \varphi _+(t/T) G(1+it) x^{1+it}\ dt - \frac{1_{(-\infty ,1)}(\sigma )}{1-\sigma }. \]
Proof

By the nonnegativity of \(a_n\) we have

\[ S_\sigma (x) \leq x^{-\sigma } \sum _n a_n \frac{x}{n} \hat\varphi _+(\frac{T}{2\pi } \log \frac{n}{x} ). \]

By Proposition 8.6.1 we can express the right-hand side as

\[ \frac{1}{2\pi i T} \int _{1-iT}^{1+iT} \varphi _+(\frac{s-1}{iT}) G(s) x^{s}\ ds + (\varphi _+(0) - \int _{-\infty }^{-T \log x/2\pi } \hat\varphi _+(y)\ dy) \frac{x}{T}. \]

If \(\lambda {\gt} 0\), then \(I_\lambda (y)=0\) for negative \(y\), so

\[ -\int _{-\infty }^{-T \log x/2π} \hat\varphi _+(y)\ dy \leq 0. \]

If \(\lambda {\lt} 0\), then \(I_\lambda (y)=e^{-\lambda y}\) for \(y\) negative, so

\[ -\int _{-\infty }^{-T \log x/2π} I_\lambda (y)\ dy \leq e^{\lambda T \log x/2π}/(-\lambda ) = x^{\sigma -1}/(-\lambda ). \]

hence

\[ -\int _{-\infty }^{-T \log x/2π} \hat\varphi _+(y)\ dy \leq - x^{\sigma -1}/(-\lambda ). \]

Since \(x^{-\sigma } * (2\pi x / T) * x^{\sigma -1}/(-\lambda ) = 1/(1-\sigma )\), the result follows.

Proposition 8.6.3 CH2 Proposition 2.4, lower bound

Let \(a_n\) be a non-negative sequence with \(\sum _{n{\gt}1} \frac{|a_n|}{n \log ^\beta n} {\lt} \infty \) for some \(\beta {\gt} 1\). Assume that \(\sum _n a_n n^{-s} - \frac{1}{s-1}\) extends continuously to a function \(G\) defined on \(1 + i[-T,T]\). Let \(\varphi _-\) be absolutely integrable, supported on \([-1,1]\), and has Fourier decay \(\hat\varphi _-(y) = O(1/|y|^\beta )\). Assume \(\hat\varphi _-(y) \leq I_\lambda (y)\) for all \(y\). Then for any \(x\geq 1\) and \(\sigma \neq 1\),

\[ S_\sigma (x) \geq \frac{2\pi x^{1-\sigma }}{T} \varphi _-(0) + \frac{x^{-\sigma }}{T} \int _{-T}^T \varphi _-(t/T) G(1+it) x^{1+it}\ dt - \frac{1_{(-\infty ,1)}(\sigma )}{1-\sigma }. \]
Proof

Similar to the proof of Proposition 8.6.2; see [ 6 , Proposition 2.4 ] for details.

8.6.2 Extremal approximants to the truncated exponential

In this section we construct extremal approximants to the truncated exponential function and establish their basic properties, following [ 6 , Section 4 ] , although we skip the proof of their extremality.

Definition 8.6.3 Definition of Phi-circ (4.5)
#
\[ \Phi ^{\pm ,\circ }_\nu (z) := \frac{1}{2} (\coth \frac{w}{2} \pm 1) \]

where

\[ w = -2\pi i z + \nu . \]
Definition 8.6.4 Definition of Phi-star (4.5)
#
\[ \Phi ^{\pm ,\ast }_\nu (z) := \frac{i}{2\pi } (\frac{\nu }{2} \coth \frac{\nu }{2} - \frac{w}{2} \coth \frac{w}{2} \pm \pi i z) \]

where

\[ w = -2\pi i z + \nu . \]
Definition 8.6.5 Definition of phi-pm (4.5)
#
\[ \varphi ^{\pm }_\nu (t) := 1_{[-1,1]}(t) ( \Phi ^{\pm ,\circ }_\nu (t) + \mathrm{sgn}(t) \Phi ^{\pm ,\ast }_\nu (t) ). \]
Definition 8.6.6 Definition of phi
#
\[ \varphi _{\pm , \lambda }(t) := \varphi ^{\pm }_\nu (\mathrm{sgn}(\lambda ) t). \]
Lemma 8.6.1 phi is in L1
#

\(\varphi \) is absolutely integrable.

Proof

Straightforward estimation

Lemma 8.6.2 phi is absolutely continuous
#

\(\varphi \) is absolutely continuous.

Proof

Straightforward estimation

Lemma 8.6.3 phi derivative is of bounded variation
#

\(\varphi '\) is of bounded variation.

Proof

Straightforward estimation

Definition 8.6.7 Definition of F
#

\(F_{\pm , \lambda }\) is the Fourier transform of \(\varphi _{\pm , \lambda }\).

Lemma 8.6.4 F is in L1
#

\(F\) is absolutely integrable.

Proof

Use Lemma 2.1.6.

Sublemma 8.6.3 F real
#

\(F_{\pm ,\lambda }\) is real-valued.

Proof

Follows from the symmetry of \(\phi \).

Theorem 8.6.1 F+ majorizes I

\(F_{+,\lambda }(y) \geq I_\lambda (y)\) for all \(y\).

Proof

TODO.

Theorem 8.6.2 F- minorizes I

\(F_{+,\lambda }(y) \geq I_\lambda (y)\) for all \(y\).

Proof

TODO.

Theorem 8.6.3 F+ L1 bound
#

\(\int (F_{+,\lambda }(y)-I_\lambda (y))\ dy = \frac{1}{1-e^{-|\lambda |}} - \frac{1}{|\lambda |}\).

Proof

This should follow from the Fourier inversion formula, after showing \(F_{+,\lambda }\) is in \(L^1\)..

Theorem 8.6.4 F- L1 bound
#

\(\int (I_\lambda (y) - F_{-,\lambda }(y))\ dy = \frac{1}{|\lambda |} - \frac{1}{e^{|\lambda |} - 1}\).

Proof

This should follow from the Fourier inversion formula, after showing \(F_{-,\lambda }\) is in \(L^1\)..

TODO: Lemmas 4.2, 4.3, 4.4

8.6.3 Contour shifting

TODO: incorporate material from [ 6 , Section 5 ] .

8.6.4 The main theorem

TODO: incorporate material from [ 6 , Section 6 ] .

8.6.5 Applications to psi

TODO: incorporate material from [ 6 , Section 7 ] onwards.

8.7 Summary of results

In this section we list some papers that we plan to incorporate into this section in the future, and list some results that have not yet been moved into dedicated paper sections.

References to add:

None yet.