Prime Number Theorem And ...

4 Third Approach

4.1 Hadamard factorization

In this file, we prove the Hadamard Factorization theorem for functions of finite order, and prove that the zeta function is such.

4.2 Hoffstein-Lockhart

In this file, we use the Hoffstein-Lockhart construction to prove a zero-free region for zeta.

Hoffstein-Lockhart + Goldfeld-Hoffstein-Liemann

Instead of the “slick” identity \(3+4\cos \theta +\cos 2\theta =2(\cos \theta +1)^2\ge 0\), we use the following more robust identity.

Theorem 4.2.1

For any \(p{\gt}0\) and \(t\in \mathbb {R}\),

\[ 3+p^{2it}+p^{-2it}+2p^{it}+2p^{-it} \ge 0. \]
Proof

This follows immediately from the identity

\[ |1+p^{it}+p^{-it}|^2=1+p^{2it}+p^{-2it}+2p^{it}+2p^{-it}+2. \]

[Note: identities of this type will work in much greater generality, especially for higher degree \(L\)-functions.]

This means that, for fixed \(t\), we define the following alternate function.

Definition 4.2.1
#

For \(\sigma {\gt}1\) and \(t\in \mathbb {R}\), define

\[ F(\sigma ) := \zeta ^3(\sigma )\zeta ^2(\sigma +it)\zeta ^2(\sigma -it)\zeta (\sigma +2it)\zeta (\sigma -2it). \]
Theorem 4.2.2

Then \(F\) is real-valued, and whence \(F(\sigma )\ge 1\) there.

Proof

That \(\log F(\sigma )\ge 0\) for \(\sigma {\gt}1\) follows from Theorem 4.2.1.

[Note: I often prefer to avoid taking logs of functions that, even if real-valued, have to be justified as being such. Instead, I like to start with “logF” as a convergent Dirichlet series, show that it is real-valued and non-negative, and then exponentiate...]

From this and Hadamard factorization, we deduce the following.

Theorem 4.2.3

There is a constant \(c{\gt}0\), so that \(\zeta (s)\) does not vanish in the region \(\sigma {\gt}1-\frac{c}{\log t}\), and moreover,

\[ -\frac{\zeta '}{\zeta }(\sigma +it) \ll (\log t)^2 \]

there.

Proof

Use Theorem 4.2.2 and Hadamard factorization.

This allows us to quantify precisely the relationship between \(T\) and \(\delta \) in Theorem 3.4.25....

4.3 Strong PNT

Definition 4.3.1
#

Given a complex function \(f\), we define the function

\[ g(z):=\begin{cases} \frac{f(z)}{z}, & z\neq 0;\\ f’(0), & z=0. \end{cases} \]
Lemma 4.3.1
#

Let \(f\) be a complex function and let \(z\neq 0\). Then, with \(g\) defined as in Definition 4.3.1,

\[ g(z)=\frac{f(z)}{z}. \]
Proof

This follows directly from the definition of \(g\).

Lemma 4.3.2
#

Let \(f\) be a complex function analytic on an open set \(s\) containing \(0\) such that \(f(0)=0\). Then, with \(g\) defined as in Definition 4.3.1, \(g\) is analytic on \(s\).

Proof

We need to show that \(g\) is complex differentiable at every point in \(s\). For \(z\neq 0\), this follows directly from the definition of \(g\) and the fact that \(f\) is analytic on \(s\). For \(z=0\), we use the definition of the derivative and the fact that \(f(0)=0\):

\[ \lim _{z\to 0}\frac{g(z)-g(0)}{z-0}=\lim _{z\to 0}\frac{\frac{f(z)}{z}-f'(0)}{z} =\lim _{z\to 0}\frac{f(z)-f'(0)z}{z^2} =\lim _{z\to 0}\frac{f(z)-f(0)-f'(0)(z-0)}{(z-0)^2}=0, \]

where the last equality follows from the definition of the derivative of \(f\) at \(0\). Thus, \(g\) is complex differentiable at \(0\) with derivative \(0\), completing the proof.

Lemma 4.3.3

Let \(f\) be a complex function analytic on the closed ball \(|z|\leq R\) such that \(f(0)=0\). Then, with \(g\) defined as in Definition 4.3.1, \(g\) is analytic on \(|z|\leq R\).

Proof

The proof is similar to that of Lemma 4.3.2, but we need to consider two cases: when \(x\) is on the boundary of the closed ball and when it is in the interior. In the first case, we take a small open ball around \(x\) that lies entirely within the closed ball, and apply Lemma 4.3.2 on this smaller ball. In the second case, we can take the entire open ball centered at \(0\) with radius \(R\), and again apply Lemma 4.3.2. In both cases, we use the fact that \(f(0)=0\) to ensure that the removable singularity at \(0\) is handled correctly.

Definition 4.3.2
#

Given a complex function \(f\) and a real number \(M\), we define the function

\[ f_{M}(z):=\frac{g(z)}{2M - f(z)}, \]

where \(g\) is defined as in Definition 4.3.1.

Lemma 4.3.4

Let \(M{\gt}0\). Let \(f\) be analytic on the closed ball \(|z|\leq R\) such that \(f(0)=0\) and suppose that \(2M - f(z)\neq 0\) for all \(|z|\leq R\). Then, with \(f_{M}\) defined as in Definition 4.3.2, \(f_{M}\) is analytic on \(|z|\leq R\).

Proof

This follows directly from Lemma 4.3.3 and the fact that the difference of two analytic functions is analytic.

Lemma 4.3.5
#

Let \(M{\gt}0\) and let \(x\) be a complex number such that \(\Re x\leq M\). Then, \(|x|\leq |2M - x|\).

Proof

We square both sides and simplify to obtain the equivalent inequality

\[ 0\leq 4M^2 -4M\Re x, \]

which follows directly from the assumption \(\Re x\leq M\) and the positivity of \(M\).

Theorem 4.3.1 borelCaratheodory-closedBall
#

Let \(R,\, M{\gt}0\). Let \(f\) be analytic on \(|z|\leq R\) such that \(f(0)=0\) and suppose \(\Re f(z)\leq M\) for all \(|z|\leq R\). Then for any \(0 {\lt} r {\lt} R\),

\[ \sup _{|z|\leq r}|f(z)|\leq \frac{2Mr}{R-r}. \]
Proof

Let

\[ f_M(z)=\frac{f(z)/z}{2M-f(z)}. \]

Note that \(2M-f(z)\neq 0\) because \(\Re (2M-f(z))=2M-\Re f(z)\geq M{\gt}0\). Additionally, since \(f(z)\) has a zero at \(0\), we know that \(f(z)/z\) is analytic on \(|z|\leq R\). Likewise, \(f_M(z)\) is analytic on \(|z|\leq R\).

Now note that \(|f(z)|\leq |2M-f(z)|\) since \(\Re f(z)\leq M\). Thus we have that

\[ |f_M(z)|=\frac{|f(z)|/|z|}{|2M-f(z)|}\leq \frac{1}{|z|}. \]

Now by the maximum modulus principle, we know the maximum of \(|f_M|\) must occur on the boundary where \(|z|=R\). Thus, \(|f_M(z)|\leq 1/R\) for all \(|z|\leq R\). So for \(|z|=r\) we have

\[ |f_M(z)|=\frac{|f(z)|/r}{|2M-f(z)|}\leq \frac{1}{R}\implies R\, |f(z)|\leq r\, |2M-f(z)|\leq 2Mr+r\, |f(z)|. \]

Which by algebraic manipulation gives

\[ |f(z)|\leq \frac{2Mr}{R-r}. \]

Once more, by the maximum modulus principle, we know the maximum of \(|f|\) must occur on the boundary where \(|z|=r\). Thus, the desired result immediately follows

Lemma 4.3.6 DerivativeBound
#

Let \(R,\, M{\gt}0\) and \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z|\leq R\) such that \(f(0)=0\) and suppose \(\Re f(z)\leq M\) for all \(|z|\leq R\). Then we have that

\[ |f'(z)|\leq \frac{2M(r')^2}{(R-r')(r'-r)^2} \]

for all \(|z|\leq r\).

Proof

By Lemma 4.3.7 we know that

\[ f'(z)=\frac{1}{2\pi i}\oint _{|w|=r'}\frac{f(w)}{(w-z)^2}\, dw =\frac{1}{2\pi }\int _0^{2\pi }\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\, dt. \]

Thus,

\begin{equation} \label{pickupPoint1} |f'(z)|=\left|\frac{1}{2\pi }\int _0^{2\pi } \frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\, dt\right| \leq \frac{1}{2\pi }\int _0^{2\pi } \left|\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\right|\, dt. \end{equation}
3

Now applying Theorem ??, and noting that \(r'-r\leq |r'e^{it}-z|\), we have that

\[ \left|\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\right| \leq \frac{2M(r')^2}{(R-r')(r'-r)^2}. \]

Substituting this into Equation (3) and evaluating the integral completes the proof.

This upstreamed from https://github.com/math-inc/strongpnt/tree/main

Lemma 4.3.7 cauchy-formula-deriv
#

Let \(f\) be analytic on \(|z|\leq R\). For any \(z\) with \(|z|\leq r\) and any \(r'\) with \(0 {\lt} r {\lt} r' {\lt} R\) we have

\[ f'(z)=\frac{1}{2\pi i}\oint _{|w|=r'}\frac{f(w)}{(w-z)^2}\, dw=\frac{1}{2\pi } \int _0^{2\pi }\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\, dt. \]
Proof

This is just Cauchy’s integral formula for derivatives.

Lemma 4.3.8 DerivativeBound
#

Let \(R,\, M{\gt}0\) and \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z|\leq R\) such that \(f(0)=0\) and suppose \(\Re f(z)\leq M\) for all \(|z|\leq R\). Then we have that

\[ |f'(z)|\leq \frac{2M(r')^2}{(R-r')(r'-r)^2} \]

for all \(|z|\leq r\).

Proof

By Lemma 4.3.7 we know that

\[ f'(z)=\frac{1}{2\pi i}\oint _{|w|=r'}\frac{f(w)}{(w-z)^2}\, dw =\frac{1}{2\pi }\int _0^{2\pi }\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\, dt. \]

Thus,

\begin{equation} \label{pickupPoint1} |f'(z)|=\left|\frac{1}{2\pi }\int _0^{2\pi } \frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\, dt\right| \leq \frac{1}{2\pi }\int _0^{2\pi } \left|\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\right|\, dt. \end{equation}
4

Now applying Theorem ??, and noting that \(r'-r\leq |r'e^{it}-z|\), we have that

\[ \left|\frac{r'e^{it}\, f(r'e^{it})}{(r'e^{it}-z)^2}\right| \leq \frac{2M(r')^2}{(R-r')(r'-r)^2}. \]

Substituting this into Equation (4) and evaluating the integral completes the proof.

Theorem 4.3.2 BorelCaratheodoryDeriv
#

Let \(R,\, M{\gt}0\). Let \(f\) be analytic on \(|z|\leq R\) such that \(f(0)=0\) and suppose \(\Re f(z)\leq M\) for all \(|z|\leq R\). Then for any \(0 {\lt} r {\lt} R\),

\[ |f'(z)|\leq \frac{16MR^2}{(R-r)^3} \]

for all \(|z|\leq r\).

Proof

Using Lemma 4.3.8 with \(r'=(R+r)/2\), and noting that \(r {\lt} R\), we have that

\[ |f'(z)|\leq \frac{4M(R+r)^2}{(R-r)^3}\leq \frac{16MR^2}{(R-r)^3}. \]
Theorem 4.3.3 LogOfAnalyticFunction

Let \(0 {\lt} r {\lt} R{\lt}1\). Let \(B:\overline{\mathbb {D}_R}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_R}\) with \(B(z)\neq 0\) for all \(z\in \overline{\mathbb {D}_R}\). Then there exists \(J_B:\overline{\mathbb {D}_r}\to \mathbb {C}\) that is analytic on neighborhoods of points in \(\overline{\mathbb {D}_r}\) such that

  • \(J_B(0)=0\)

  • \(J_B'(z)=B'(z)/B(z)\)

  • \(\log |B(z)|-\log |B(0)|=\Re J_B(z)\)

for all \(z\in \overline{\mathbb {D}_r}\).

Proof

We let \(J_B(z)=\mathrm{Log}\, B(z)-\mathrm{Log}\, B(0)\). Then clearly, \(J_B(0)=0\) and \(J_B'(z)=B'(z)/B(z)\). Showing the third property is a little more difficult, but by no standards terrible. Exponentiating \(J_B(z)\) we have that

\[ \exp (J_B(z))=\exp (\mathrm{Log}\, B(z)-\mathrm{Log}\, B(0)) =\frac{B(z)}{B(0)}\implies B(z)=B(0)\exp (J_B(z)). \]

Now taking the modulus

\[ |B(z)|=|B(0)|\cdot |\exp (J_B(z))|=|B(0)|\cdot \exp (\Re J_B(z)). \]

Taking the real logarithm of both sides and rearranging gives the third point.

Definition 4.3.3 SetOfZeros
#

Let \(R{\gt}0\) and \(f:\overline{\mathbb {D}_R}\to \mathbb {C}\). Define the set of zeros \(\mathcal{K}_f(R)=\{ \rho \in \mathbb {C}:|\rho |\leq R,\, f(\rho )=0\} \).

Definition 4.3.4 ZeroOrder
#

Let \(0 {\lt} R{\lt}1\) and \(f:\mathbb {C}\to \mathbb {C}\) be analtyic on neighborhoods of points in \(\overline{\mathbb {D}_1}\). For any zero \(\rho \in \mathcal{K}_f(R)\), we define \(m_f(\rho )\) as the order of the zero \(\rho \) w.r.t \(f\).

Lemma 4.3.9 ZeroFactorization

Let \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)\neq 0\). For all \(\rho \in \mathcal{K}_f(1)\) there exists \(h_\rho (z)\) that is analytic at \(\rho \), \(h_\rho (\rho )\neq 0\), and \(f(z)=(z-\rho )^{m_f(\rho )}\, h_\rho (z)\).

Proof

Since \(f\) is analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) we know that there exists a series expansion about \(\rho \):

\[ f(z)=\sum _{0\leq n}a_n\, (z-\rho )^n. \]

Now if we let \(m\) be the smallest number such that \(a_m\neq 0\), then

\[ f(z)=\sum _{0\leq n}a_n\, (z-\rho )^n=\sum _{m\leq n}a_n\, (z-\rho )^n =(z-\rho )^m\sum _{m\leq n}a_n\, (z-\rho )^{n-m}=(z-\rho )^m\, h_\rho (z). \]

Trivially, \(h_\rho (z)\) is analytic at \(\rho \) (we have written down the series expansion); now note that

\[ h_\rho (\rho )=\sum _{m\leq n}a_n(\rho -\rho )^{n-m}=\sum _{m\leq n}a_n0^{n-m}=a_m\neq 0. \]
Definition 4.3.5 CFunction
#

Let \(0 {\lt} r {\lt} R{\lt}1\), and \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)\neq 0\). We define a function \(C_f:\overline{\mathbb {D}_R}\to \mathbb {C}\) as follows. This function is constructed by dividing \(f(z)\) by a polynomial whose roots are the zeros of \(f\) inside \(\overline{\mathbb {D}_r}\).

\[ C_f(z)=\begin{cases} \displaystyle \frac{f(z)}{\prod _{\rho \in \mathcal{K}_f(r)}(z-\rho )^{m_f(\rho )}} \qquad \text{for }z\not\in \mathcal{K}_f(r) \\ \displaystyle \frac{h_z(z)}{\prod _{\rho \in \mathcal{K}_f(r)\setminus \{ z\} } (z-\rho )^{m_f(\rho )}}\qquad \text{for }z\in \mathcal{K}_f(r) \end{cases} \]

where \(h_z(z)\) comes from Lemma 4.3.9.

Definition 4.3.6 BlaschkeB
#

Let \(0 {\lt} r {\lt} R{\lt}1\), and \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)\neq 0\). We define a function \(B_f:\overline{\mathbb {D}_R}\to \mathbb {C}\) as follows.

\[ B_f(z)=C_f(z)\prod _{\rho \in \mathcal{K}_f(r)} \left(R-\frac{z\overline{\rho }}{R}\right)^{m_f(\rho )} \]
Lemma 4.3.10 BlaschkeOfZero

Let \(0 {\lt} r {\lt} R{\lt}1\), and \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)\neq 0\). Then

\[ |B_f(0)|=|f(0)|\prod _{\rho \in \mathcal{K}_f(r)} \left(\frac{R}{|\rho |}\right)^{m_f(\rho )}. \]
Proof

Since \(f(0)\neq 0\), we know that \(0\not\in \mathcal{K}_f(r)\). Thus,

\[ C_f(0)=\frac{f(0)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)}(-\rho )^{m_f(\rho )}}. \]

Thus, substituting this into Definition 4.3.6,

\[ |B_f(0)|=|C_f(0)|\prod _{\rho \in \mathcal{K}_f(r)}R^{m_f(\rho )} =|f(0)|\prod _{\rho \in \mathcal{K}_f(r)}\left(\frac{R}{|\rho |}\right)^{m_f(\rho )}. \]
Lemma 4.3.11 DiskBound

Let \(B{\gt}1\) and \(0 {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(|f(z)|\leq B\) for \(|z|\leq R\), then \(|B_f(z)|\leq B\) for \(|z|\leq R\) also.

Proof

For \(|z|=R\), we know that \(z\not\in \mathcal{K}_f(r)\). Thus,

\[ C_f(z)=\frac{f(z)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)}(z-\rho )^{m_f(\rho )}}. \]

Thus, substituting this into Definition 4.3.6,

\[ |B_f(z)|=|f(z)|\prod _{\rho \in \mathcal{K}_f(r)} \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|^{m_f(\rho )}. \]

But note that

\[ \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right| =\frac{|R^2-z\overline{\rho }|/R}{|z-\rho |} =\frac{|z|\cdot |\overline{z-\rho }|/R}{|z-\rho |}=1. \]

So we have that \(|B_f(z)|=|f(z)|\leq B\) when \(|z|=R\). Now by the maximum modulus principle, we know that the maximum of \(|B_f|\) must occur on the boundary where \(|z|=R\). Thus \(|B_f(z)|\leq B\) for all \(|z|\leq R\).

Theorem 4.3.4 ZerosBound

Let \(B{\gt}1\) and \(0{\lt} r {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)=1\) and \(|f(z)|\leq B\) for \(|z|\leq R\), then

\[ \sum _{\rho \in \mathcal{K}_f(r)}m_f(\rho )\leq \frac{\log B}{\log (R/r)}. \]
Proof

Since \(f(0)=1\), we know that \(0\not\in \mathcal{K}_f(r)\). Thus,

\[ C_f(0)=\frac{f(0)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)}(-\rho )^{m_f(\rho )}}. \]

Thus, substituting this into Definition 4.3.6,

\[ (R/r)^{\sum _{\rho \in \mathcal{K}_f(r)}m_f(\rho )} =\prod _{\rho \in \mathcal{K}_f(r)}\left(\frac{R}{r}\right)^{m_f(\rho )} \leq \prod _{\rho \in \mathcal{K}_f(r)}\left(\frac{R}{|\rho |}\right)^{m_f(\rho )} =|B_f(0)|\leq B \]

whereby Lemma 4.3.11 we know that \(|B_f(z)|\leq B\) for all \(|z|\leq R\). Taking the logarithm of both sides and rearranging gives the desired result.

Definition 4.3.7 JBlaschke
#

Let \(B{\gt}1\) and \(0 {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)=1\), define \(L_f(z)=J_{B_f}(z)\) where \(J\) is from Theorem 4.3.3 and \(B_f\) is from Definition 4.3.6.

Lemma 4.3.12 BlaschkeNonZero

Let \(0 {\lt} r {\lt} R{\lt}1\) and \(f:\overline{\mathbb {D}_1}\to \mathbb {C}\) be analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\). Then \(B_f(z)\neq 0\) for all \(z\in \overline{\mathbb {D}_r}\).

Proof

Suppose that \(z\in \mathcal{K}_f(r)\). Then we have that

\[ C_f(z)=\frac{h_z(z)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)\setminus \{ z\} } (z-\rho )^{m_f(\rho )}}. \]

where \(h_z(z)\neq 0\) according to Lemma 4.3.9. Thus, substituting this into Definition 4.3.6,

\begin{equation} \label{pickupPoint2} |B_f(z)|=|h_z(z)|\cdot \left|R-\frac{|z|^2}{R}\right|^{m_f(z)} \prod _{\rho \in \mathcal{K}_f(r)\setminus \{ z\} } \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|^{m_f(\rho )}. \end{equation}
7

Trivially, \(|h_z(z)|\neq 0\). Now note that

\[ \left|R-\frac{|z|^2}{R}\right|=0\implies |z|=R. \]

However, this is a contradiction because \(z\in \overline{\mathbb {D}_r}\) tells us that \(|z|\leq r {\lt} R\). Similarly, note that

\[ \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|=0\implies |z|=\frac{R^2}{|\overline{\rho }|}. \]

However, this is also a contradiction because \(\rho \in \mathcal{K}_f(r)\) tells us that \(R {\lt} R^2/|\overline{\rho }|=|z|\), but \(z\in \overline{\mathbb {D}_r}\) tells us that \(|z|\leq r {\lt} R\). So, we know that

\[ \left|R-\frac{|z|^2}{R}\right|\neq 0\qquad \text{and}\qquad \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|\neq 0 \quad \text{for all}\quad \rho \in \mathcal{K}_f(r)\setminus \{ z\} . \]

Applying this to Equation (7) we have that \(|B_f(z)|\neq 0\). So, \(B_f(z)\neq 0\).

Now suppose that \(z\not\in \mathcal{K}_f(r)\). Then we have that

\[ C_f(z)=\frac{f(z)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(r)}(z-\rho )^{m_f(\rho )}}. \]

Thus, substituting this into Definition 4.3.6,

\begin{equation} \label{pickupPoint3} |B_f(z)|=|f(z)|\prod _{\rho \in \mathcal{K}_f(r)} \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|^{m_f(\rho )}. \end{equation}
8

We know that \(|f(z)|\neq 0\) since \(z\not\in \mathcal{K}_f(r)\). Now note that

\[ \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|=0\implies |z|=\frac{R^2}{|\overline{\rho }|}. \]

However, this is a contradiction because \(\rho \in \mathcal{K}_f(r)\) tells us that \(R {\lt} R^2/|\overline{\rho }|=|z|\), but \(z\in \overline{\mathbb {D}_r}\) tells us that \(|z|\leq r {\lt} R\). So, we know that

\[ \left|\frac{R-z\overline{\rho }/R}{z-\rho }\right|\neq 0 \quad \text{for all}\quad \rho \in \mathcal{K}_f(r). \]

Applying this to Equation (8) we have that \(|B_f(z)|\neq 0\). So, \(B_f(z)\neq 0\).

We have shown that \(B_f(z)\neq 0\) for both \(z\in \mathcal{K}_f(r)\) and \(z\not\in \mathcal{K}_f(r)\), so the result follows.

Theorem 4.3.5 JBlaschkeDerivBound

Let \(B{\gt}1\) and \(0 {\lt} r' {\lt} r {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)=1\) and \(|f(z)|\leq B\) for all \(|z|\leq R\), then for all \(|z|\leq r'\)

\[ |L_f'(z)|\leq \frac{16\log (B)\, r^2}{(r-r')^3} \]
Proof

By Lemma 4.3.11 we immediately know that \(|B_f(z)|\leq B\) for all \(|z|\leq R\). Now since \(L_f=J_{B_f}\) by Definition 4.3.7, by Theorem 4.3.3 we know that

\[ L_f(0)=0\qquad \text{and}\qquad \Re L_f(z)=\log |B_f(z)|-\log |B_f(0)|\leq \log |B_f(z)|\leq \log B \]

for all \(|z|\leq r\). So by Theorem 4.3.2, it follows that

\[ |L_f'(z)|\leq \frac{16\log (B)\, r^2}{(r-r')^3} \]

for all \(|z|\leq r'\).

Theorem 4.3.6 FinalBound

Let \(B{\gt}1\) and \(0 {\lt} r' {\lt} r {\lt} R' {\lt} R{\lt}1\). If \(f:\mathbb {C}\to \mathbb {C}\) is a function analytic on neighborhoods of points in \(\overline{\mathbb {D}_1}\) with \(f(0)=1\) and \(|f(z)|\leq B\) for all \(|z|\leq R\), then for all \(z\in \overline{\mathbb {D}_{R'}}\setminus \mathcal{K}_f(R')\) we have

\[ \left|\frac{f'}{f}(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }\right| \leq \left(\frac{16r^2}{(r-r')^3}+\frac{1}{(R^2/R'-R')\, \log (R/R')}\right)\log B. \]
Proof

Since \(z\in \overline{\mathbb {D}_{r'}}\setminus \mathcal{K}_f(R')\) we know that \(z\not\in \mathcal{K}_f(R')\); thus, by Definition 4.3.5 we know that

\[ C_f(z)=\frac{f(z)}{\displaystyle \prod _{\rho \in \mathcal{K}_f(R')}(z-\rho )^{m_f(\rho )}}. \]

Substituting this into Definition 4.3.6 we have that

\[ B_f(z)=f(z)\prod _{\rho \in \mathcal{K}_f(R')} \left(\frac{R-z\overline{\rho }/R}{z-\rho }\right)^{m_f(\rho )}. \]

Taking the complex logarithm of both sides we have that

\[ \mathrm{Log}\, B_f(z)=\mathrm{Log}\, f(z) +\sum _{\rho \in \mathcal{K}_f(R')}m_f(\rho )\, \mathrm{Log}(R-z\overline{\rho }/R) -\sum _{\rho \in \mathcal{K}_f(R')}m_f(\rho )\, \mathrm{Log}(z-\rho ). \]

Taking the derivative of both sides we have that

\[ \frac{B_f'}{B_f}(z)=\frac{f'}{f}(z) +\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-R^2/\rho } -\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }. \]

By Definition 4.3.7 and Theorem 4.3.3 we recall that

\[ L_f(z)=J_{B_f}(z)=\mathrm{Log}\, B_f(z)-\mathrm{Log}\, B_f(0). \]

Taking the derivative of both sides we have that \(L_f'(z)=(B_f'/B_f)(z)\). Thus,

\[ \frac{f'}{f}(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho } =L_f'(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-R^2/\rho }. \]

Now since \(z\in \overline{\mathbb {D}_{R'}}\) and \(\rho \in \mathcal{K}_f(R')\), we know that \(R^2/R'-R'\leq |z-R^2/\rho |\). Thus by the triangle inequality we have

\[ \left|\frac{f'}{f}(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }\right| \leq |L_f'(z)|+\left(\frac{1}{R^2/R'-R'}\right)\sum _{\rho \in \mathcal{K}_f(R')}m_f(\rho ). \]

Now by Theorem 4.3.4 and 4.3.5 we get our desired result with a little algebraic manipulation.

Theorem 4.3.7 ZetaFixedLowerBound

For all \(t\in \mathbb {R}\) one has

\[ |\zeta (3/2+it)|\geq \frac{\zeta (3)}{\zeta (3/2)}. \]
Proof

From the Euler product expansion of \(\zeta \), we have that for \(\Re s{\gt}1\)

\[ \zeta (s)=\prod _p\frac{1}{1-p^{-s}}. \]

Thus, we have that

\[ \frac{\zeta (2s)}{\zeta (s)}=\prod _p\frac{1-p^{-s}}{1-p^{-2s}}=\prod _p\frac{1}{1+p^{-s}}. \]

Now note that \(|1-p^{-(3/2+it)}|\leq 1+|p^{-(3/2+it)}|=1+p^{-3/2}\). Thus,

\[ |\zeta (3/2+it)|=\prod _p\frac{1}{|1-p^{-(3/2+it)}|} \geq \prod _p\frac{1}{1+p^{-3/2}}=\frac{\zeta (3)}{\zeta (3/2)} \]

for all \(t\in \mathbb {R}\) as desired.

Lemma 4.3.13 ZetaAltFormula

Let

\[ \zeta _0(s)=1+\frac{1}{s-1}-s\int _1^\infty \{ x\} \, x^{-s}\, \frac{dx}{x}. \]

We have that \(\zeta (s)=\zeta _0(s)\) for \(\sigma {\gt}1\).

Proof

Note that for \(\sigma {\gt}1\) we have

\[ \zeta (s)=\sum _{n=1}^\infty \frac{1}{n^s} =\sum _{n=1}^\infty \frac{n}{n^s}-\sum _{n=1}^\infty \frac{n-1}{n^s} =\sum _{n=1}^\infty \frac{n}{n^s}-\sum _{n=0}^\infty \frac{n}{(n+1)^s} =\sum _{n=1}^\infty \frac{n}{n^s}-\sum _{n=1}^\infty \frac{n}{(n+1)^s}. \]

Thus

\[ \zeta (s)=\sum _{n=1}^\infty n\, (n^{-s}-(n+1)^{-s}). \]

Now we note that

\[ s\int _n^{n+1}x^{-s}\, \frac{dx}{x} =s\left(-\frac{1}{s}\, x^{-s}\right)_n^{n+1}=n^{-s}-(n+1)^{-s}. \]

So, substituting this we have

\[ \zeta (s)=\sum _{n=1}^\infty n\, (n^{-s}-(n+1)^{-s}) =s\sum _{n=1}^\infty n\int _n^{n+1}x^{-s}\, \frac{dx}{x} =s\int _1^\infty \lfloor x\rfloor \, x^{-s}\, \frac{dx}{x}. \]

But noting that \(\lfloor x\rfloor =x-\{ x\} \) we have that

\[ \zeta (s)=s\int _1^\infty \lfloor x\rfloor \, x^{-s}\, \frac{dx}{x} =s\int _1^\infty x^{-s}\, dx-s\int _1^\infty \{ x\} \, x^{-s}\, \frac{dx}{x}. \]

Evaluating the first integral completes the result.

Lemma 4.3.14 ZetaAltFormulaAnalytic

We have that \(\zeta _0(s)\) is analytic for all \(s\in S\) where \(S=\{ s\in \mathbb {C}:\Re s{\gt}0,\, s\neq 1\} \).

Proof

Note that we have

\[ \left|\int _1^\infty \{ x\} \, x^{-s}\, \frac{dx}{x}\right| \leq \int _1^\infty |\{ x\} \, x^{-s-1}|\, dx \leq \int _1^\infty x^{-\sigma -1}\, dx=\frac{1}{\sigma }. \]

So this integral converges uniformly on compact subsets of \(S\), which tells us that it is analytic on \(S\). So it immediately follows that \(\zeta _0(s)\) is analytic on \(S\) as well, since \(S\) avoids the pole at \(s=1\) coming from the \((s-1)^{-1}\) term.

Lemma 4.3.15 ZetaExtend

We have that

\[ \zeta (s)=1+\frac{1}{s-1}-s\int _1^\infty \{ x\} \, x^{-s}\, \frac{dx}{x} \]

for all \(s\in S\).

Proof

This is an immediate consequence of the identity theorem.

Theorem 4.3.8 GlobalBound

For all \(s\in \mathbb {C}\) with \(|s|\leq 1\) and \(t\in \mathbb {R}\) with \(|t|\geq 2\), we have that

\[ |\zeta (s+3/2+it)|\leq 7+2\, |t|. \]
Proof

For the sake of clearer proof writing let \(z=s+3/2+it\). Since \(|s|\leq 1\) we know that \(1/2\leq \mathfrak {R}z\); additionally, as \(|t|\geq 2\), we know \(1\leq |\mathfrak {I}z|\). So, \(z\in S\). Thus, from Lemma 4.3.15 we know that

\[ |\zeta (z)|\leq 1+\frac{1}{|z-1|} +|z|\cdot \left|\int _1^\infty \{ x\} \, x^{-z}\, \frac{dx}{x}\right| \]

by applying the triangle inequality. Now note that \(|z-1|\geq 1\). Likewise,

\[ |z|\cdot \left|\int _1^\infty \{ x\} \, x^{-z}\, \frac{dx}{x}\right| \leq |z|\int _1^\infty |\{ x\} \, x^{-z-1}|\, dx \leq |z|\int _1^\infty x^{-\Re z-1}\, dx=\frac{|z|}{\Re z}\leq 2\, |z|. \]

Thus we have that,

\[ |\zeta (s+3/2+it)|=|\zeta (z)|\leq 1+1+2\, |z|=2+2\, |s+3/2+it| \leq 2+2\, |s|+3+2\, |it|\leq 7+2\, |t|. \]
Theorem 4.3.9 LogDerivZetaFinalBound

Let \(t\in \mathbb {R}\) with \(|t|\geq 2\) and \(0 {\lt} r' {\lt} r {\lt} R' {\lt} R{\lt}1\). If \(f(z)=\zeta (z+3/2+it)\), then for all \(z\in \overline{\mathbb {D}_R'}\setminus \mathcal{K}_f(R')\) we have that

\[ \left|\frac{f'}{f}(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }\right| \ll \left(\frac{16r^2}{(r-r')^3}+\frac{1}{(R^2/R'-R')\, \log (R/R')}\right)\log |t|. \]
Proof

Let \(g(z)=\zeta (z+3/2+it)/\zeta (3/2+it)\). Note that \(g(0)=1\) and for \(|z|\leq R\)

\[ |g(z)|=\frac{|\zeta (z+3/2+it)|}{|\zeta (3/2+it)|} \leq \frac{\zeta (3/2)}{\zeta (3)}\cdot (7+2\, |t|)\leq \frac{13\, \zeta (3/2)}{3\, \zeta (3)}\, |t| \]

by Theorems 4.3.7 and 4.3.8. Thus by Theorem 4.3.6 we have that

\[ \left|\frac{g'}{g}(z)-\sum _{\rho \in \mathcal{K}_g(R')}\frac{m_g(\rho )}{z-\rho }\right| \leq \left(\frac{16r^2}{(r-r')^3}+\frac{1}{(R^2/R'-R')\, \log (R/R')}\right) \left(\log |t|+\log \left(\frac{13\, \zeta (3/2)}{3\, \zeta (3)}\right)\right). \]

Now note that \(f'/f=g'/g\), \(\mathcal{K}_f(R')=\mathcal{K}_g(R')\), and \(m_g(\rho )=m_f(\rho )\) for all \(\rho \in \mathcal{K}_f(R')\). Thus we have that,

\[ \left|\frac{f'}{f}(z)-\sum _{\rho \in \mathcal{K}_f(R')}\frac{m_f(\rho )}{z-\rho }\right| \ll \left(\frac{16r^2}{(r-r')^3}+\frac{1}{(R^2/R'-R')\, \log (R/R')}\right)\log |t| \]

where the implied constant \(C\) is taken to be

\[ C\geq 1+\frac{\log ((13\, \zeta (3/2))/(3\, \zeta (3)))}{\log 2}. \]
Definition 4.3.8 ZeroWindows
#

Let \(\mathcal{Z}_t=\{ \rho \in \mathbb {C}:\zeta (\rho )=0,\, |\rho -(3/2+it)|\leq 5/6\} \).

Lemma 4.3.16 SumBoundI

For all \(\delta \in (0,1)\) and \(t\in \mathbb {R}\) with \(|t|\geq 2\) we have

\[ \left|\frac{\zeta '}{\zeta }(1+\delta +it) -\sum _{\rho \in \mathcal{Z}_t}\frac{m_\zeta (\rho )}{1+\delta +it-\rho }\right|\ll \log |t|. \]
Proof

We apply Theorem 4.3.9 where \(r'=2/3\), \(r=3/4\), \(R'=5/6\), and \(R=8/9\). Thus, for all \(z\in \overline{\mathbb {D}_{5/6}}\setminus \mathcal{K}_f(5/6)\) we have that

\[ \left|\frac{\zeta '}{\zeta }(z+3/2+it) -\sum _{\rho \in \mathcal{K}_f(5/6)}\frac{m_f(\rho )}{z-\rho }\right|\ll \log |t| \]

where \(f(z)=\zeta (z+3/2+it)\) for \(t\in \mathbb {R}\) with \(|t|\geq 3\). Now if we let \(z=-1/2+\delta \), then \(z\in (-1/2,1/2)\subseteq \overline{\mathbb {D}_{5/6}}\). Additionally, \(f(z)=\zeta (1+\delta +it)\), where \(1+\delta +it\) lies in the zero-free region where \(\sigma {\gt}1\). Thus, \(z\not\in \mathcal{K}_f(5/6)\). So,

\[ \left|\frac{\zeta '}{\zeta }(1+\delta +it) -\sum _{\rho \in \mathcal{K}_f(5/6)}\frac{m_f(\rho )}{-1/2+\delta -\rho }\right| \ll \log |t|. \]

But now note that if \(\rho \in \mathcal{K}_f(5/6)\), then \(\zeta (\rho +3/2+it)=0\) and \(|\rho |\leq 5/6\). Thus, \(\rho +3/2+it\in \mathcal{Z}_t\). Additionally, note that \(m_f(\rho )=m_\zeta (\rho +3/2+it)\). So changing variables using these facts gives us that

\[ \left|\frac{\zeta '}{\zeta }(1+\delta +it) -\sum _{\rho \in \mathcal{Z}_t}\frac{m_\zeta (\rho )}{1+\delta +it-\rho }\right| \ll \log |t|. \]
Lemma 4.3.17 ShiftTwoBound

For all \(\delta \in (0,1)\) and \(t\in \mathbb {R}\) with \(|t|\geq 2\) we have

\[ -\Re \left(\frac{\zeta '}{\zeta }(1+\delta +2it)\right)\ll \log |t|. \]
Proof

Note that, for \(\rho \in \mathcal{Z}_{2t}\)

\begin{align*} \Re \left(\frac{1}{1+\delta +2it-\rho }\right) & =\Re \left(\frac{1+\delta -2it-\overline{\rho }}{(1+\delta +2it-\rho )(1+\delta -2it-\overline{\rho })}\right) \\ & =\frac{\Re (1+\delta -2it-\overline{\rho })}{|1+\delta +2it-\rho |^2} =\frac{1+\delta -\Re \rho }{(1+\delta -\Re \rho )^2+(2t-\mathfrak {I}\rho )^2}. \end{align*}

Now since \(\rho \in \mathcal{Z}_{2t}\), we have that \(|\rho -(3/2+2it)|\leq 5/6\). So, we have \(\Re \rho \in (2/3,7/3)\) and \(\mathfrak {I}\rho \in (2t-5/6,2t+5/6)\). Thus, we have that

\[ 1/3{\lt}1+\delta -\Re \rho \qquad \text{and}\qquad (1+\delta -\Re \rho )^2+(2t-\mathfrak {I}\rho )^2{\lt}16/9+25/36=89/36. \]

Which implies that

\begin{equation} \label{pickupPoint4} 0\leq \frac{12}{89} {\lt}\frac{1+\delta -\Re \rho }{(1+\delta -\Re \rho )^2+(2t-\mathfrak {I}\rho )^2} =\Re \left(\frac{1}{1+\delta +2it-\rho }\right). \end{equation}
9

Note that, from Lemma 4.3.16, we have

\[ \sum _{\rho \in \mathcal{Z}_{2t}}m_\zeta (\rho )\, \Re \left(\frac{1}{1+\delta +2it-\rho }\right) -\Re \left(\frac{\zeta '}{\zeta }(1+\delta +2it)\right) \leq \left|\frac{\zeta '}{\zeta }(1+\delta +2it) -\sum _{\rho \in \mathcal{Z}_{2t}}\frac{m_\zeta (\rho )}{1+\delta +2it-\rho }\right| \ll \log |2t|. \]

Since \(m_\zeta (\rho )\geq 0\) for all \(\rho \in \mathcal{Z}_{2t}\), the inequality from Equation (9) tells us that by subtracting the sum from both sides we have

\[ -\Re \left(\frac{\zeta '}{\zeta }(1+\delta +2it)\right)\ll \log |2t|. \]

Noting that \(\log |2t|=\log (2)+\log |t|\leq 2\log |t|\) completes the proof.

Lemma 4.3.18 ShiftOneBound

There exists \(C{\gt}0\) such that for all \(\delta \in (0,1)\) and \(t\in \mathbb {R}\) with \(|t|\geq 3\); if \(\zeta (\rho )=0\) with \(\rho =\sigma +it\), then

\[ -\Re \left(\frac{\zeta '}{\zeta }(1+\delta +it)\right) \leq -\frac{1}{1+\delta -\sigma }+C\log |t|. \]
Proof

Note that for \(\rho '\in \mathcal{Z}_t\)

\begin{align*} \Re \left(\frac{1}{1+\delta +it-\rho '}\right) & =\Re \left(\frac{1+\delta -it-\overline{\rho '}}{(1+\delta +it-\rho ')(1+\delta -it-\overline{\rho '})}\right) \\ & =\frac{\Re (1+\delta -it-\overline{\rho '})}{|1+\delta +it-\rho '|^2} =\frac{1+\delta -\Re \rho '}{(1+\delta -\Re \rho ')^2+(t-\mathfrak {I}\rho ')^2}. \end{align*}

Now since \(\rho '\in \mathcal{Z}_t\), we have that \(|\rho -(3/2+it)|\leq 5/6\). So, we have \(\Re \rho '\in (2/3,7/3)\) and \(\mathfrak {I}\rho '\in (t-5/6,t+5/6)\). Thus we have that

\[ 1/3{\lt}1+\delta -\Re \rho '\qquad \text{and}\qquad (1+\delta -\Re \rho ')^2+(t-\mathfrak {I}\rho ')^2{\lt}16/9+25/36=89/36. \]

Which implies that

\begin{equation} \label{pickupPoint5} 0\leq \frac{12}{89} {\lt}\frac{1+\delta -\Re \rho '}{(1+\delta -\Re \rho ')^2+(t-\mathfrak {I}\rho ')^2} =\Re \left(\frac{1}{1+\delta +it-\rho '}\right). \end{equation}
10

Note that, from Lemma 4.3.16, we have

\[ \sum _{\rho \in \mathcal{Z}_t}m_\zeta (\rho )\, \Re \left(\frac{1}{1+\delta +it-\rho }\right) -\Re \left(\frac{\zeta '}{\zeta }(1+\delta +it)\right) \leq \left|\frac{\zeta '}{\zeta }(1+\delta +it) -\sum _{\rho \in \mathcal{Z}_t}\frac{m_\zeta (\rho )}{1+\delta +it-\rho }\right| \ll \log |t|. \]

Since \(m_\zeta (\rho )\geq 0\) for all \(\rho '\in \mathcal{Z}_t\), the inequality from Equation (10) tells us that by subtracting the sum over all \(\rho '\in \mathcal{Z}_t\setminus \{ \rho \} \) from both sides we have

\[ \frac{m_\zeta (\rho )}{\Re (1+\delta +it-\rho )} -\Re \left(\frac{\zeta '}{\zeta }(1+\delta +it)\right)\ll \log |t|. \]

But of course we have that \(\Re (1+\delta +it-\rho )=1+\delta -\sigma \). So subtracting this term from both sides and recalling the implied constant we have

\[ -\Re \left(\frac{\zeta '}{\zeta }(1+\delta +it)\right) \leq -\frac{m_\zeta (\rho )}{1+\delta -\sigma }+C\log |t|. \]

We have that \(\sigma \leq 1\) since \(\zeta \) is zero free on the right half plane \(\sigma {\gt}1\). Thus \(0{\lt}1+\delta -\sigma \). Noting this in combination with the fact that \(1\leq m_\zeta (\rho )\) completes the proof.

Lemma 4.3.19 ShiftZeroBound

For all \(\delta \in (0,1)\) we have

\[ -\Re \left(\frac{\zeta '}{\zeta }(1+\delta )\right)\leq \frac{1}{\delta }+O(1). \]
Proof

From Theorem 3.4.14 we know that

\[ -\frac{\zeta '}{\zeta }(s)=\frac{1}{s-1}+O(1). \]

Changing variables \(s\mapsto 1+\delta \) and applying the triangle inequality we have that

\[ -\Re \left(\frac{\zeta '}{\zeta }(1+\delta )\right)\leq \left|-\frac{\zeta '}{\zeta }(1+\delta )\right|\leq \frac{1}{\delta }+O(1). \]
Lemma 4.3.20 ThreeFourOneTrigIdentity

We have that

\[ 0\leq 3+4\cos \theta +\cos 2\theta \]

for all \(\theta \in \mathbb {R}\).

Proof

We know that \(\cos (2\theta )=2\cos ^2\theta -1\), thus

\[ 3+4\cos \theta +\cos 2\theta =2+4\cos \theta +2\cos ^2\theta =2\, (1+\cos \theta )^2. \]

Noting that \(0\leq 1+\cos \theta \) completes the proof.

Theorem 4.3.10 ZeroInequality
#

There exists a constant \(0 {\lt} E{\lt}1\) such that for all \(\rho =\sigma +it\) with \(\zeta (\rho )=0\) and \(|t|\geq 2\), one has

\[ \sigma \leq 1-\frac{E}{\log |t|}. \]
Proof

From Theorem 3.5.1 when \(\Re s{\gt}1\) we have

\[ -\frac{\zeta '}{\zeta }(s)=\sum _{1\leq n}\frac{\Lambda (n)}{n^s}. \]

Thus,

\[ -3\, \frac{\zeta '}{\zeta }(1+\delta )-4\, \frac{\zeta '}{\zeta }(1+\delta +it)-\frac{\zeta '}{\zeta }(1+\delta +2it)=\sum _{1\leq n}\Lambda (n)\, n^{-(1+\delta )}\left(3+4n^{-it}+n^{-2it}\right). \]

Now applying Euler’s identity

\begin{align*} -3\, \Re \left(\frac{\zeta '}{\zeta }(1+\delta )\right)& -4\, \Re \left(\frac{\zeta '}{\zeta }(1+\delta +it)\right)-\Re \left(\frac{\zeta '}{\zeta }(1+\delta +2it)\right) \\ & \qquad \qquad \qquad =\sum _{1\leq n}\Lambda (n)\, n^{-(1+\delta )}\left(3+4\cos (-it\log n)+\cos (-2it\log n)\right) \end{align*}

By Lemma 4.3.20 we know that the series on the right hand side is bounded below by \(0\), and by Lemmas 4.3.17, 4.3.18, and 4.3.19 we have an upper bound on the left hand side. So,

\[ 0\leq \frac{3}{\delta }+3A-\frac{4}{1+\delta -\sigma }+4B\log |t|+C\log |t| \]

where \(A\), \(B\), and \(C\) are the implied constants coming from Lemmas 4.3.19, 4.3.18, and 4.3.17 respectively. By choosing \(D\geq 3A/\log 2+4B+C\) we have

\[ \frac{4}{1+\delta -\sigma }\leq \frac{3}{\delta }+D\log |t| \]

by some manipulation. Now if we choose \(\delta =(2D\log |t|)^{-1}\) then we have

\[ \frac{4}{1-\sigma +1/(2D\log |t|)}\leq 7D\log |t|. \]

So with some manipulation we have that

\[ \sigma \leq 1-\frac{1}{14D\log |t|}. \]

This is exactly the desired result with the constant \(E=(14D)^{-1}\)

Definition 4.3.9 DeltaT
#

Let \(\delta _t=E/\log |t|\) where \(E\) is the constant coming from Theorem 4.3.10.

For all \(t\in \mathbb {R}\) with \(|t|\geq 2\) we have that

\[ \delta _t{\lt}1/14. \]
Proof

Note that \(\delta _t=E/\log |t|\) where \(E\) is the implied constant from Lemma 4.3.10. But we know that \(E=(14D)^{-1}\) where \(D\geq 3A/\log 2+4B+C\) where \(A\), \(B\), and \(C\) are the constants coming from Lemmas 4.3.19, 4.3.18, and 4.3.17 respectively. Thus,

\[ E\leq \frac{1}{14\, (3A/\log 2+4B+C)}. \]

But note that \(A\geq 0\) and \(B\geq 0\) by Lemmas 4.3.19 and 4.3.18 respectively. However, we have that

\[ C\geq 2+\frac{2\log ((13\, \zeta (3/2))/(3\, \zeta (3)))}{\log 2} \]

by Theorem 4.3.9 with Lemmas 4.3.16 and 4.3.17. So, by a very lazy estimate we have \(C\geq 2\) and \(E\leq 1/28\). Thus,

\[ \delta _t=\frac{E}{\log |t|}\leq \frac{1}{28\, \log 2}{\lt}\frac{1}{14}. \]
Lemma 4.3.22 SumBoundII

For all \(t\in \mathbb {R}\) with \(|t|\geq 2\) and \(z=\sigma +it\) where \(1-\delta _t/3\leq \sigma \leq 3/2\), we have that

\[ \left|\frac{\zeta '}{\zeta }(z)-\sum _{\rho \in \mathcal{Z}_t}\frac{m_\zeta (\rho )}{z-\rho }\right|\ll \log |t|. \]
Proof

By Lemma 4.3.21 we have that

\[ -11/21{\lt}-1/2-\delta _t/3\leq \sigma -3/2\leq 0. \]

We apply Theorem 4.3.9 where \(r'=2/3\), \(r=3/4\), \(R'=5/6\), and \(R=8/9\). Thus for all \(z\in \overline{\mathbb {D}_{5/6}}\setminus \mathcal{K}_f(5/6)\) we have that

\[ \left|\frac{\zeta '}{\zeta }(z+3/2+it)-\sum _{\rho \in \mathcal{K}_f(5/6)}\frac{m_f(\rho )}{z-\rho }\right|\ll \log |t| \]

where \(f(z)=\zeta (z+3/2+it)\) for \(t\in \mathbb {R}\) with \(|t|\geq 3\). Now if we let \(z=\sigma -3/2\), then \(z\in (-11/21,0)\subseteq \overline{\mathbb {D}_{5/6}}\). Additionally, \(f(z)=\zeta (\sigma +it)\), where \(\sigma +it\) lies in the zero free region given by Lemma 4.3.10 since \(\sigma \geq 1-\delta _t/3\geq 1-\delta _t\). Thus, \(z\not\in \mathcal{K}_f(5/6)\). So,

\[ \left|\frac{\zeta '}{\zeta }(\sigma +it)-\sum _{\rho \in \mathcal{K}_f(5/6)}\frac{m_f(\rho )}{\sigma -3/2-\rho }\right|\ll \log |t|. \]

But now note that if \(\rho \in \mathcal{K}_f(5/6)\), then \(\zeta (\rho +3/2+it)=0\) and \(|\rho |\leq 5/6\). Additionally, note that \(m_f(\rho )=m_\zeta (\rho +3/2+it)\). So changing variables using these facts gives us that

\[ \left|\frac{\zeta '}{\zeta }(\sigma +it)-\sum _{\rho \in \mathcal{Z}_t}\frac{m_\zeta (\rho )}{\sigma +it-\rho }\right|\ll \log |t|. \]
Lemma 4.3.23 GapSize

Let \(t\in \mathbb {R}\) with \(|t|\geq 3\) and \(z=\sigma +it\) where \(1-\delta _t/3\leq \sigma \leq 3/2\). Additionally, let \(\rho \in \mathcal{Z}_t\). Then we have that

\[ |z-\rho |\geq \delta _t/6. \]
Proof

Let \(\rho =\sigma '+it'\) and note that since \(\rho \in \mathcal{Z}_t\), we have \(t'\in (t-5/6,t+5/6)\). Thus, if \(t{\gt}1\) we have

\[ \log |t'|\leq \log |t+5/6|\leq \log |2t|=\log 2+\log |t|\leq 2\log |t|. \]

And otherwise if \(t{\lt}-1\) we have

\[ \log |t'|\leq \log |t-5/6|\leq \log |2t|=\log 2+\log |t|\leq 2\log |t|. \]

So by taking reciprocals and multiplying through by a constant we have that \(\delta _t\leq 2\delta _{t'}\). Now note that since \(\rho \in \mathcal{Z}_t\) we know that \(\sigma '\leq 1-\delta _{t'}\) by Theorem 4.3.10 (here we use the fact that \(|t|\geq 3\) to give us that \(|t'|\geq 2\)). Thus,

\[ \delta _t/6\leq \delta _{t'}-\delta _t/3=1-\delta _t/3-(1-\delta _{t'})\leq \sigma -\sigma '\leq |z-\rho |. \]
Lemma 4.3.24 LogDerivZetaUniformLogSquaredBoundStrip

There exists a constant \(F\in (0,1/2)\) such that for all \(t\in \mathbb {R}\) with \(|t|\geq 3\) one has

\[ 1-\frac{F}{\log |t|}\leq \sigma \leq 3/2\implies \left|\frac{\zeta '}{\zeta }(\sigma +it)\right|\ll \log ^2|t| \]

where the implied constant is uniform in \(\sigma \).

Proof

Take \(F=E/3\) where \(E\) comes from Theorem 4.3.10. Then we have that \(\sigma \geq 1-\delta _t/3\). So, we apply Lemma 4.3.22, which gives us that

\[ \left|\frac{\zeta '}{\zeta }(z)-\sum _{\rho \in \mathcal{Z}_t}\frac{m_\zeta (\rho )}{z-\rho }\right|\ll \log |t|. \]

Using the reverse triangle inequality and rearranging, we have that

\[ \left|\frac{\zeta '}{\zeta }(z)\right|\leq \sum _{\rho \in \mathcal{Z}_t}\frac{m_\zeta (\rho )}{|z-\rho |}+C\, \log |t| \]

where \(C\) is the implied constant in Lemma 4.3.22. Now applying Lemma 4.3.23 we have that

\[ \left|\frac{\zeta '}{\zeta }(z)\right|\leq \frac{6}{\delta _t}\sum _{\rho \in \mathcal{Z}_t}m_\zeta (\rho )+C\, \log |t|. \]

Now let \(f(z)=\zeta (z+3/2+it)/\zeta (3/2+it)\) with \(\rho =\rho '+3/2+it\). Then if \(\rho \in \mathcal{Z}_t\) we have that

\[ 0=\zeta (\rho )=\zeta (\rho '+3/2+it)=f(\rho ') \]

with the same multiplicity of zero, that is \(m_\zeta (\rho )=m_f(\rho ')\). And also if \(\rho \in \mathcal{Z}_t\) then

\[ 5/6\geq |\rho -(3/2+it)|=|\rho '|. \]

Thus we change variables to have that

\[ \left|\frac{\zeta '}{\zeta }(z)\right|\leq \frac{6}{\delta _t}\sum _{\rho '\in \mathcal{K}_f(5/6)}m_f(\rho ')+C\, \log |t|. \]

Now note that \(f(0)=1\) and for \(|z|\leq 8/9\) we have

\[ |f(z)|=\frac{|\zeta (z+3/2+it)|}{|\zeta (3/2+it)|}\leq \frac{\zeta (3/2)}{\zeta (3)}\cdot (7+2\, |t|)\leq \frac{13\, \zeta (3/2)}{3\, \zeta (3)}\, |t| \]

by Theorems 4.3.7 and 4.3.8. Thus by Theorem 4.3.4 we have that

\[ \sum _{\rho '\in \mathcal{K}_f(5/6)}m_f(\rho ')\leq \frac{\log |t|+\log (13\, \zeta (3/2)/(3\, \zeta (3)))}{\log ((8/9)/(5/6))}\leq D\log |t| \]

where \(D\) is taken to be sufficiently large. Recall, by definition that, \(\delta _t=E/\log |t|\) with \(E\) coming from Theorem 4.3.10. By using this fact and the above, we have that

\[ \left|\frac{\zeta '}{\zeta }(z)\right|\ll \log ^2|t|+\log |t| \]

where the implied constant is taken to be bigger than \(\max (6D/E,C)\). We know that the RHS is bounded above by \(\ll \log ^2|t|\); so the result follows.

Theorem 4.3.11 LogDerivZetaUniformLogSquaredBound

There exists a constant \(F\in (0,1/2)\) such that for all \(t\in \mathbb {R}\) with \(|t|\geq 3\) one has

\[ 1-\frac{F}{\log |t|}\leq \sigma \implies \left|\frac{\zeta '}{\zeta }(\sigma +it)\right|\ll \log ^2|t| \]

where the implied constant is uniform in \(\sigma \).

Proof

Note that

\[ \left|\frac{\zeta '}{\zeta }(\sigma +it)\right|=\sum _{1\leq n}\frac{\Lambda (n)}{|n^{\sigma +it}|}=\sum _{1\leq n}\frac{\Lambda (n)}{n^\sigma }=-\frac{\zeta '}{\zeta }(\sigma )\leq \left|\frac{\zeta '}{\zeta }(\sigma )\right|. \]

From Theorem 3.4.14, and applying the triangle inequality we know that

\[ \left|\frac{\zeta '}{\zeta }(s)\right|\leq \frac{1}{|s-1|}+C. \]

where \(C{\gt}0\) is some constant. Thus, for \(\sigma \geq 3/2\) we have that

\[ \left|\frac{\zeta '}{\zeta }(\sigma +it)\right|\leq \left|\frac{\zeta '}{\zeta }(\sigma )\right|\leq \frac{1}{\sigma -1}+C\leq 2+C\ll 1\ll \log ^2|t|. \]

Putting this together with Lemma 4.3.24 completes the proof.

Theorem 4.3.12 LogDerivZetaLogSquaredBoundSmallt

For \(T{\gt}0\) and \(\sigma '=1-\delta _T/3=1-F/\log T\), if \(|t|\leq T\) then we have that

\[ \left|\frac{\zeta '}{\zeta }(\sigma '+it)\right|\ll \log ^2(2+T). \]
Proof

Note that if \(|t|\geq 3\) then from Theorem 4.3.11 we have that

\[ \left|\frac{\zeta '}{\zeta }(\sigma '+it)\right|\ll \log ^2|t|\leq \log ^2T\leq \log ^2(2+T). \]

Otherwise, if \(|t|\leq 3\), then from Theorem 3.4.14 and applying the triangle inequality we know

\[ \left|\frac{\zeta '}{\zeta }(\sigma '+it)\right|\leq \frac{1}{|(\sigma '-1)+it|}+C\leq \frac{\log T}{F}+C \]

where \(C\geq 0\). Thus, we have that

\[ \left|\frac{\zeta '}{\zeta }(\sigma '+it)\right|\leq \left(\frac{\log T}{F\, \log 2}+\frac{C}{\log 2}\right)\, \log (2+|t|)\leq \left(\frac{\log (2+T)}{F\, \log 2}+\frac{C}{\log 2}\right)\log (2+T)\ll \log ^2(2+T). \]

From here out we closely follow our previous proof of the Medium PNT and we modify it using our new estimate in Theorem 4.3.11. Recall Definition 3.5.2; for fixed \(\varepsilon {\gt}0\) and a bump function \(\nu \) supported on \([1/2,2]\) we have

\[ \psi _\varepsilon (X)=\frac{1}{2\pi i}\int _{(\sigma )}\left(-\frac{\zeta '}{\zeta }(s)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(s)\, X^s\, ds \]

where \(\sigma =1+1/\log X\). Let \(T{\gt}3\) be a large constant to be chosen later, and we take \(\sigma '=1-\delta _T/3=1-F/\log T\) with \(F\) coming from Theorem 4.3.11. We integrate along the \(\sigma \) vertical line, and we pull contours accumulating the pole at \(s=1\) when we integrate along the curves

  • \(I_1\): \(\sigma -i\infty \) to \(\sigma -iT\)

  • \(I_2\): \(\sigma '-iT\) to \(\sigma -iT\)

  • \(I_3\): \(\sigma '-iT\) to \(\sigma '+iT\)

  • \(I_4\): \(\sigma '+iT\) to \(\sigma +iT\)

  • \(I_5\): \(\sigma +iT\) to \(\sigma +i\infty \).

Definition 4.3.10 I1New
#

Let

\[ I_1(\nu ,\varepsilon ,X,T)=\frac{1}{2\pi i}\int _{-\infty }^{-T}\left(-\frac{\zeta '}{\zeta }(\sigma +it)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(\sigma +it)\, X^{\sigma +it}\, dt. \]
Definition 4.3.11 I5New
#

Let

\[ I_5(\nu ,\varepsilon ,X,T)=\frac{1}{2\pi i}\int _T^\infty \left(-\frac{\zeta '}{\zeta }(\sigma +it)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(\sigma +it)\, X^{\sigma +it}\, dt. \]
Lemma 4.3.25 I1NewBound
#

We have that

\[ |I_1(\nu ,\varepsilon ,X,T)|\ll \frac{X}{\varepsilon \sqrt{T}}. \]
Proof

Note that \(|I_1(\nu ,\varepsilon ,X,T)|=\)

\[ \left|\frac{1}{2\pi i}\int _{-\infty }^{-T}\left(-\frac{\zeta '}{\zeta }(\sigma +it)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(\sigma +it)\, X^{\sigma +it}\, dt\right|\ll \int _{-\infty }^{-T}\left|\frac{\zeta '}{\zeta }(\sigma +it)\right|\cdot |\mathcal{M}(\tilde{1}_\varepsilon )(\sigma +it)|\cdot X^\sigma \, dt. \]

Applying Theorem 4.3.11 and Lemma 3.3.10, we have that

\[ |I_1(\nu ,\varepsilon ,X,T)|\ll \int _{-\infty }^{-T}\log ^2|t|\cdot \frac{X^\sigma }{\varepsilon \, |\sigma +it|^2}\, dt\ll \frac{X}{\varepsilon }\int _T^\infty \frac{\sqrt{t}\, dt}{t^2}\ll \frac{X}{\varepsilon \sqrt{T}}. \]

Here we are using the fact that \(\log ^2 t\) grows slower than \(\sqrt{t}\), \(|\sigma +it|^2\geq t^2\), and \(X^\sigma =X\cdot X^{1/\log X}=eX\).

Lemma 4.3.26 I5NewBound

We have that

\[ |I_5(\nu ,\varepsilon ,X,T)|\ll \frac{X}{\varepsilon \sqrt{T}}. \]
Proof

By symmetry, note that

\[ |I_1(\nu ,\varepsilon ,X,T)|=|\overline{I_5(\nu ,\varepsilon ,X,T)}|=|I_5(\nu ,\varepsilon ,X,T)|. \]

Applying Lemma 4.3.25 completes the proof.

Definition 4.3.12 I2New
#

Let

\[ I_2(\nu ,\varepsilon ,X,T)=\frac{1}{2\pi i}\int _{\sigma '}^\sigma \left(-\frac{\zeta '}{\zeta }(\sigma _0-iT)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(\sigma _0-iT)\, X^{\sigma _0-iT}\, d\sigma _0. \]
Definition 4.3.13 I4New
#

Let

\[ I_4(\nu ,\varepsilon ,X,T)=\frac{1}{2\pi i}\int _{\sigma '}^\sigma \left(-\frac{\zeta '}{\zeta }(\sigma _0+iT)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(\sigma _0+iT)\, X^{\sigma _0+iT}\, d\sigma _0. \]
Lemma 4.3.27 I2NewBound

We have that

\[ |I_2(\nu ,\varepsilon ,X,T)|\ll \frac{X}{\varepsilon \sqrt{T}}. \]
Proof

Note that \(|I_2(\nu ,\varepsilon ,X,T)|=\)

\[ \left|\frac{1}{2\pi i}\int _{\sigma '}^\sigma \left(-\frac{\zeta '}{\zeta }(\sigma _0-iT)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(\sigma _0-iT)\, X^{\sigma _0-iT}\, d\sigma _0\right|\ll \int _{\sigma '}^\sigma \left|\frac{\zeta '}{\zeta }(\sigma _0-iT)\right|\cdot |\mathcal{M}(\tilde{1}_\varepsilon )(\sigma _0-iT)|\cdot X^{\sigma _0}\, d\sigma _0. \]

Applying Theorem 4.3.11 and Lemma 3.3.10, we have that

\[ |I_2(\nu ,\varepsilon ,X,T)|\ll \int _{\sigma '}^\sigma \log ^2 T\cdot \frac{X^{\sigma _0}}{\varepsilon \, |\sigma _0-iT|^2}\, d\sigma _0\ll \frac{X\, \log ^2T}{\varepsilon \, T^2}\int _{\sigma '}^\sigma d\, \sigma _0=\frac{X\, \log ^2T}{\varepsilon \, T^2}\, (\sigma -\sigma '). \]

Here we are using the fact that \(X^{\sigma _0}\leq X^\sigma =X\cdot X^{1/\log X}=eX\) and \(|\sigma _0-iT|^2\geq T^2\). Now note that

\[ |I_2(\nu ,\varepsilon ,X,T)|\ll \frac{X\, \log ^2T}{\varepsilon \, T^2}\, (\sigma -\sigma ')=\frac{X\, \log ^2T}{\varepsilon \, T^2\, \log X}+\frac{FX\, \log T}{\varepsilon \, T^2}\ll \frac{X}{\varepsilon \sqrt{T}}. \]

Here we are using the fact that \(\log T\ll T^{3/2}\), \(\log ^2T\ll T^{3/2}\), and \(X/\log X\ll X\).

We have that

\[ |I_4(\nu ,\varepsilon ,X,T)|\ll \frac{X}{\varepsilon \sqrt{T}}. \]
Proof

By symmetry, note that

\[ |I_2(\nu ,\varepsilon ,X,T)|=|\overline{I_4(\nu ,\varepsilon ,X,T)}|=|I_4(\nu ,\varepsilon ,X,T)|. \]

Applying Lemma 4.3.27 completes the proof.

Definition 4.3.14 I3New
#

Let

\[ I_3(\nu ,\varepsilon ,X,T)=\frac{1}{2\pi i}\int _{-T}^T\left(-\frac{\zeta '}{\zeta }(\sigma '+it)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(\sigma '+it)\, X^{\sigma '+it}\, dt. \]
Lemma 4.3.29 I3NewBound

We have that

\[ |I_3(\nu ,\varepsilon ,X,T)|\ll \frac{X^{1-F/\log T}\sqrt{T}}{\varepsilon }. \]
Proof

Note that \(|I_3(\nu ,\varepsilon ,X,T)|=\)

\[ \left|\frac{1}{2\pi i}\int _{-T}^T\left(-\frac{\zeta '}{\zeta }(\sigma '+it)\right)\, \mathcal{M}(\tilde{1}_\varepsilon )(\sigma '+it)\, X^{\sigma '+it}\, dt\right|\ll \int _{-T}^T\left|\frac{\zeta '}{\zeta }(\sigma '+it)\right|\cdot |\mathcal{M}(\tilde{1}_\varepsilon )(\sigma '+it)|\cdot X^{\sigma '}\, dt. \]

Applying Theorem 4.3.12 and Lemma 3.3.10, we have that

\[ |I_3(\nu ,\varepsilon ,X,T)|\ll \int _{-T}^T\log ^2(2+T)\cdot \frac{X^{\sigma '}}{\varepsilon \, |\sigma '+it|^2}\, dt\ll \frac{X^{1-F/\log T}\, \sqrt{T}}{\varepsilon }\int _0^T\frac{dt}{|\sigma '+it|^2}. \]

Here we are using the fact that this integrand is symmetric in \(t\) about \(0\) and that \(\log ^2(2+T)\ll \sqrt{T}\) for sufficiently large \(T\). Now note that, by Lemma 4.3.21, we have

\[ \frac{1}{|\sigma '+it|^2}=\frac{1}{(1-\delta _T/3)^2+t^2}{\lt}\frac{1}{(41/42)^2+t^2}. \]

Thus,

\[ |I_3(\nu ,\varepsilon ,X,T)|\ll \frac{X^{1-F/\log T}\sqrt{T}}{\varepsilon }\int _0^T\frac{dt}{|\sigma '+it|^2}\leq \frac{X^{1-F/\log T}\sqrt{T}}{\varepsilon }\int _0^\infty \frac{dt}{(41/42)^2+t^2}. \]

The integral on the right hand side evaluates to \(21\pi /41\), which is just a constant, so the desired result follows.

We have that

\[ \psi _\varepsilon (X)=\mathcal{M}(\tilde{1}_\varepsilon )(1)\, X^1+I_1-I_2+I_3+I_4+I_5. \]
Proof

Pull contours and accumulate the pole of \(\zeta '/\zeta \) at \(s=1\).

Theorem 4.3.14 StrongPNT

We have

\[ \sum _{n\leq x}\Lambda (n)=x+O\left(x\exp (-c\sqrt{\log x})\right). \]
Proof

By Theorem 3.5.3 and 4.3.13 we have that

\[ \mathcal{M}(\tilde{1}_\varepsilon )(1)\, x^1+I_1-I_2+I_3+I_4+I_5=\psi (x)+O(\varepsilon x\log x). \]

Applying Theorem 3.3.11 and Lemmas 4.3.25, 4.3.27, 4.3.29, 4.3.28, and 4.3.26 we have that

\[ \psi (x)=x+O(\varepsilon x)+O(\varepsilon x\log x)+O\left(\frac{x}{\varepsilon \sqrt{T}}\right)+O\left(\frac{x^{1-F/\log T}\sqrt{T}}{\varepsilon }\right). \]

We absorb the \(O(\varepsilon x)\) term into the \(O(\varepsilon x\log x)\) term and balance the last two terms in \(T\).

\[ \frac{x}{\varepsilon \sqrt{T}}=\frac{x^{1-F/\log T}\sqrt{T}}{\varepsilon }\implies T=\exp (\sqrt{F\log x}). \]

Thus,

\[ \psi (x)=x+O(\varepsilon x\log x)+O\left(\frac{x}{\displaystyle \varepsilon \exp ((1/2)\cdot \sqrt{F\log x})}\right). \]

Now we balance the last two terms in \(\varepsilon \).

\[ \varepsilon x\log x=\frac{x}{\displaystyle \varepsilon \exp ((1/2)\cdot \sqrt{F\log x})}\implies \varepsilon \log x=\frac{\displaystyle \sqrt{\log x}}{\displaystyle \exp ((1/4)\cdot \sqrt{F\log x})}. \]

Thus,

\[ \psi (x)=x+O\left(x\exp (-(\sqrt{F}/4)\cdot \sqrt{\log x})\sqrt{\log x}\right). \]

Absorbing the \(\displaystyle \sqrt{\log x}\) into the \(\displaystyle \exp (-(\sqrt{F}/4)\cdot \sqrt{\log x})\) completes the proof.