Documentation

Mathlib.Analysis.Normed.Operator.NormedSpace

Operator norm for maps on normed spaces #

This file contains statements about operator norm for which it really matters that the underlying space has a norm (rather than just a seminorm).

theorem LinearMap.bound_of_shell {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] (f : E β†’β‚›β‚—[σ₁₂] F) {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–) (hf : βˆ€ (x : E), Ξ΅ / β€–cβ€– ≀ β€–xβ€– β†’ β€–xβ€– < Ξ΅ β†’ β€–f xβ€– ≀ C * β€–xβ€–) (x : E) :
theorem LinearMap.bound_of_ball_bound {π•œ : Type u_1} {E : Type u_4} {Fβ‚— : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup Fβ‚—] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] [NormedSpace π•œ Fβ‚—] {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] Fβ‚—) (h : βˆ€ z ∈ Metric.ball 0 r, β€–f zβ€– ≀ c) :
βˆƒ (C : ℝ), βˆ€ (z : E), β€–f zβ€– ≀ C * β€–zβ€–

LinearMap.bound_of_ball_bound' is a version of this lemma over a field satisfying RCLike that produces a concrete bound.

theorem LinearMap.antilipschitz_of_comap_nhds_le {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [h : RingHomIsometric σ₁₂] (f : E β†’β‚›β‚—[σ₁₂] F) (hf : Filter.comap (⇑f) (nhds 0) ≀ nhds 0) :
βˆƒ (K : NNReal), AntilipschitzWith K ⇑f
theorem ContinuousLinearMap.opNorm_zero_iff {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} (f : E β†’SL[σ₁₂] F) [RingHomIsometric σ₁₂] :

An operator is zero iff its norm vanishes.

@[simp]
theorem ContinuousLinearMap.norm_id {π•œ : Type u_1} {E : Type u_4} [NormedAddCommGroup E] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] [Nontrivial E] :

If a normed space is non-trivial, then the norm of the identity equals 1.

instance ContinuousLinearMap.normOneClass {π•œ : Type u_1} {E : Type u_4} [NormedAddCommGroup E] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] [Nontrivial E] :
NormOneClass (E β†’L[π•œ] E)
noncomputable instance ContinuousLinearMap.toNormedAddCommGroup {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] :
NormedAddCommGroup (E β†’SL[σ₁₂] F)

Continuous linear maps themselves form a normed space with respect to the operator norm.

Equations
noncomputable instance ContinuousLinearMap.toNormedRing {π•œ : Type u_1} {E : Type u_4} [NormedAddCommGroup E] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] :
NormedRing (E β†’L[π•œ] E)

Continuous linear maps form a normed ring with respect to the operator norm.

Equations
  • One or more equations did not get rendered due to their size.
theorem ContinuousLinearMap.homothety_norm {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] [Nontrivial E] (f : E β†’SL[σ₁₂] F) {a : ℝ} (hf : βˆ€ (x : E), β€–f xβ€– = a * β€–xβ€–) :
theorem ContinuousLinearMap.antilipschitz_of_isEmbedding {π•œ : Type u_1} {E : Type u_4} {Fβ‚— : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup Fβ‚—] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] [NormedSpace π•œ Fβ‚—] (f : E β†’L[π•œ] Fβ‚—) (hf : Topology.IsEmbedding ⇑f) :
βˆƒ (K : NNReal), AntilipschitzWith K ⇑f

If a continuous linear map is a topology embedding, then it is expands the distances by a positive factor.

@[simp]
theorem LinearIsometry.norm_toContinuousLinearMap {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [Nontrivial E] [RingHomIsometric σ₁₂] (f : E β†’β‚›β‚—α΅’[σ₁₂] F) :
@[simp]
theorem LinearIsometry.nnnorm_toContinuousLinearMap {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [Nontrivial E] [RingHomIsometric σ₁₂] (f : E β†’β‚›β‚—α΅’[σ₁₂] F) :
@[simp]
theorem LinearIsometry.enorm_toContinuousLinearMap {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [Nontrivial E] [RingHomIsometric σ₁₂] (f : E β†’β‚›β‚—α΅’[σ₁₂] F) :
theorem LinearIsometry.norm_toContinuousLinearMap_comp {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {π•œβ‚ƒ : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_7} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NontriviallyNormedField π•œβ‚ƒ] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] [NormedSpace π•œβ‚ƒ G] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₁₂] (f : F β†’β‚›β‚—α΅’[σ₂₃] G) {g : E β†’SL[σ₁₂] F} :

Postcomposition of a continuous linear map with a linear isometry preserves the operator norm.

noncomputable def LinearIsometry.postcomp {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {π•œβ‚ƒ : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_7} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NontriviallyNormedField π•œβ‚ƒ] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] [NormedSpace π•œβ‚ƒ G] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {σ₁₃ : π•œ β†’+* π•œβ‚ƒ} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₁₂] [RingHomIsometric σ₁₃] (a : F β†’β‚›β‚—α΅’[σ₂₃] G) :
(E β†’SL[σ₁₂] F) β†’β‚›β‚—α΅’[σ₂₃] E β†’SL[σ₁₃] G

Composing on the left with a linear isometry gives a linear isometry between spaces of continuous linear maps.

Equations
Instances For
    theorem ContinuousLinearMap.opNorm_comp_linearIsometryEquiv {π•œβ‚‚ : Type u_2} {π•œβ‚ƒ : Type u_3} {F : Type u_5} {G : Type u_7} [NormedAddCommGroup F] [NormedAddCommGroup G] [NontriviallyNormedField π•œβ‚‚] [NontriviallyNormedField π•œβ‚ƒ] [NormedSpace π•œβ‚‚ F] [NormedSpace π•œβ‚ƒ G] {σ₂₃ : π•œβ‚‚ β†’+* π•œβ‚ƒ} {π•œβ‚‚' : Type u_8} [NontriviallyNormedField π•œβ‚‚'] {F' : Type u_9} [NormedAddCommGroup F'] [NormedSpace π•œβ‚‚' F'] {Οƒβ‚‚' : π•œβ‚‚' β†’+* π•œβ‚‚} {Οƒβ‚‚'' : π•œβ‚‚ β†’+* π•œβ‚‚'} {σ₂₃' : π•œβ‚‚' β†’+* π•œβ‚ƒ} [RingHomInvPair Οƒβ‚‚' Οƒβ‚‚''] [RingHomInvPair Οƒβ‚‚'' Οƒβ‚‚'] [RingHomCompTriple Οƒβ‚‚' σ₂₃ σ₂₃'] [RingHomCompTriple Οƒβ‚‚'' σ₂₃' σ₂₃] [RingHomIsometric σ₂₃] [RingHomIsometric Οƒβ‚‚'] [RingHomIsometric Οƒβ‚‚''] [RingHomIsometric σ₂₃'] (f : F β†’SL[σ₂₃] G) (g : F' ≃ₛₗᡒ[Οƒβ‚‚'] F) :

    Precomposition with a linear isometry preserves the operator norm.

    @[simp]
    theorem ContinuousLinearMap.norm_smulRightL {π•œ : Type u_1} {E : Type u_4} {Fβ‚— : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup Fβ‚—] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] [NormedSpace π•œ Fβ‚—] (c : StrongDual π•œ E) [Nontrivial Fβ‚—] :
    β€–(smulRightL π•œ E Fβ‚—) cβ€– = β€–cβ€–
    theorem ContinuousLinearMap.norm_smulRightL_le {π•œ : Type u_1} {E : Type u_4} {Fβ‚— : Type u_6} [NormedAddCommGroup E] [NormedAddCommGroup Fβ‚—] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] [NormedSpace π•œ Fβ‚—] :
    β€–smulRightL π•œ E Fβ‚—β€– ≀ 1
    theorem Submodule.norm_subtypeL {π•œ : Type u_1} {E : Type u_4} [NormedAddCommGroup E] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] (K : Submodule π•œ E) [Nontrivial β†₯K] :
    theorem ContinuousLinearEquiv.antilipschitz {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] (e : E ≃SL[σ₁₂] F) :
    theorem ContinuousLinearEquiv.one_le_norm_mul_norm_symm {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] [RingHomIsometric σ₁₂] [Nontrivial E] (e : E ≃SL[σ₁₂] F) :
    theorem ContinuousLinearEquiv.norm_pos {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] [RingHomIsometric σ₁₂] [Nontrivial E] (e : E ≃SL[σ₁₂] F) :
    0 < ‖↑eβ€–
    theorem ContinuousLinearEquiv.norm_symm_pos {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] [RingHomIsometric σ₁₂] [Nontrivial E] (e : E ≃SL[σ₁₂] F) :
    theorem ContinuousLinearEquiv.nnnorm_symm_pos {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] [RingHomIsometric σ₁₂] [Nontrivial E] (e : E ≃SL[σ₁₂] F) :
    theorem ContinuousLinearEquiv.subsingleton_or_norm_symm_pos {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] [RingHomIsometric σ₁₂] (e : E ≃SL[σ₁₂] F) :
    theorem ContinuousLinearEquiv.subsingleton_or_nnnorm_symm_pos {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} {σ₂₁ : π•œβ‚‚ β†’+* π•œ} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₂₁] [RingHomIsometric σ₁₂] (e : E ≃SL[σ₁₂] F) :
    @[simp]
    theorem ContinuousLinearEquiv.coord_norm (π•œ : Type u_1) {E : Type u_4} [NormedAddCommGroup E] [NontriviallyNormedField π•œ] [NormedSpace π•œ E] (x : E) (h : x β‰  0) :

    A bounded bilinear form B in a real normed space is coercive if there is some positive constant C such that C * β€–uβ€– * β€–uβ€– ≀ B u u.

    Equations
    Instances For
      theorem NormedSpace.equicontinuous_TFAE {π•œ : Type u_1} {π•œβ‚‚ : Type u_2} {E : Type u_4} {F : Type u_5} {ΞΉ : Type u_8} [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F] (f : ΞΉ β†’ E β†’SL[σ₁₂] F) :
      [EquicontinuousAt (DFunLike.coe ∘ f) 0, Equicontinuous (DFunLike.coe ∘ f), UniformEquicontinuous (DFunLike.coe ∘ f), βˆƒ (C : ℝ), βˆ€ (i : ΞΉ) (x : E), β€–(f i) xβ€– ≀ C * β€–xβ€–, βˆƒ C β‰₯ 0, βˆ€ (i : ΞΉ) (x : E), β€–(f i) xβ€– ≀ C * β€–xβ€–, βˆƒ (C : ℝ), βˆ€ (i : ΞΉ), β€–f iβ€– ≀ C, βˆƒ C β‰₯ 0, βˆ€ (i : ΞΉ), β€–f iβ€– ≀ C, BddAbove (Set.range fun (x : ΞΉ) => β€–f xβ€–), ⨆ (i : ΞΉ), ↑‖f iβ€–β‚Š < ⊀].TFAE

      Equivalent characterizations for equicontinuity of a family of continuous linear maps between normed spaces. See also WithSeminorms.equicontinuous_TFAE for similar characterizations between spaces satisfying WithSeminorms.

      def LinearIsometry.single {ΞΉ : Type u_8} [Fintype ΞΉ] [DecidableEq ΞΉ] (π•œ : Type u_9) [NontriviallyNormedField π•œ] (E : ΞΉ β†’ Type u_10) [(i : ΞΉ) β†’ SeminormedAddCommGroup (E i)] [(i : ΞΉ) β†’ NormedSpace π•œ (E i)] (i : ΞΉ) :
      E i β†’β‚—α΅’[π•œ] (j : ΞΉ) β†’ E j

      The injection x ↦ Pi.single i x as a linear isometry.

      Equations
      Instances For
        theorem ContinuousLinearMap.norm_single_le_one {ΞΉ : Type u_8} [Fintype ΞΉ] [DecidableEq ΞΉ] (π•œ : Type u_9) [NontriviallyNormedField π•œ] (E : ΞΉ β†’ Type u_10) [(i : ΞΉ) β†’ SeminormedAddCommGroup (E i)] [(i : ΞΉ) β†’ NormedSpace π•œ (E i)] (i : ΞΉ) :
        theorem ContinuousLinearMap.norm_single {ΞΉ : Type u_8} [Fintype ΞΉ] [DecidableEq ΞΉ] (π•œ : Type u_9) [NontriviallyNormedField π•œ] (E : ΞΉ β†’ Type u_10) [(i : ΞΉ) β†’ NormedAddCommGroup (E i)] [(i : ΞΉ) β†’ NormedSpace π•œ (E i)] (i : ΞΉ) [Nontrivial (E i)] :
        β€–single π•œ E iβ€– = 1