The span of a single vector #
The equivalence of ๐ and ๐ โข x for x โ 0 are defined as continuous linear equivalence and
isometry.
Main definitions #
ContinuousLinearEquiv.toSpanNonzeroSingleton: The continuous linear equivalence between๐and๐ โข xforx โ 0.LinearIsometryEquiv.toSpanUnitSingleton: Forโxโ = 1the continuous linear equivalence is a linear isometry equivalence.
theorem
LinearMap.toSpanSingleton_homothety
(๐ : Type u_1)
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[NormSMulClass ๐ E]
(x : E)
(c : ๐)
:
theorem
LinearEquiv.toSpanNonzeroSingleton_homothety
(๐ : Type u_1)
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[NormSMulClass ๐ E]
(x : E)
(h : x โ 0)
(c : ๐)
:
noncomputable def
ContinuousLinearEquiv.toSpanNonzeroSingleton
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(x : E)
(h : x โ 0)
:
Given a nonzero element x of a normed space Eโ over a field ๐, the natural
continuous linear equivalence from ๐ to the span of x.
Equations
- ContinuousLinearEquiv.toSpanNonzeroSingleton ๐ x h = ContinuousLinearEquiv.ofHomothety (LinearEquiv.toSpanNonzeroSingleton ๐ E x h) โxโ โฏ โฏ
Instances For
@[simp]
theorem
ContinuousLinearEquiv.toSpanNonzeroSingleton_apply_coe
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(x : E)
(h : x โ 0)
(aโ : ๐)
:
@[simp]
theorem
ContinuousLinearEquiv.toSpanNonzeroSingleton_symm_apply
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(x : E)
(h : x โ 0)
(aโ : โฅ(Submodule.span ๐ {x}))
:
(toSpanNonzeroSingleton ๐ x h).symm aโ = (LinearEquiv.ofInjective (LinearMap.toSpanSingleton ๐ E x) โฏ).symm
((LinearEquiv.ofEq (Submodule.span ๐ {x}) (LinearMap.range (LinearMap.toSpanSingleton ๐ E x)) โฏ) aโ)
noncomputable def
ContinuousLinearEquiv.coord
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(x : E)
(h : x โ 0)
:
StrongDual ๐ โฅ(Submodule.span ๐ {x})
Given a nonzero element x of a normed space Eโ over a field ๐, the natural continuous
linear map from the span of x to ๐.
Equations
- ContinuousLinearEquiv.coord ๐ x h = โ(ContinuousLinearEquiv.toSpanNonzeroSingleton ๐ x h).symm
Instances For
@[simp]
theorem
ContinuousLinearEquiv.coe_toSpanNonzeroSingleton_symm
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{x : E}
(h : x โ 0)
:
@[simp]
theorem
ContinuousLinearEquiv.coord_toSpanNonzeroSingleton
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{x : E}
(h : x โ 0)
(c : ๐)
:
@[simp]
theorem
ContinuousLinearEquiv.toSpanNonzeroSingleton_coord
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{x : E}
(h : x โ 0)
(y : โฅ(Submodule.span ๐ {x}))
:
@[simp]
theorem
ContinuousLinearEquiv.coord_self
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(x : E)
(h : x โ 0)
:
noncomputable def
LinearIsometryEquiv.toSpanUnitSingleton
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[NormSMulClass ๐ E]
(x : E)
(hx : โxโ = 1)
:
Given a unit element x of a normed space E over a field ๐, the natural
linear isometry equivalence from ๐ to the span of x.
Equations
- LinearIsometryEquiv.toSpanUnitSingleton x hx = { toLinearEquiv := LinearEquiv.toSpanNonzeroSingleton ๐ E x โฏ, norm_map' := โฏ }
Instances For
@[simp]
theorem
LinearIsometryEquiv.toSpanUnitSingleton_apply
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[NormSMulClass ๐ E]
(x : E)
(hx : โxโ = 1)
(r : ๐)
: