Equations
- mellintransform2 = Lean.ParserDescr.node `mellintransform2 1024 (Lean.ParserDescr.symbol "𝓜")
Instances For
theorem
LogDerivativeDirichlet
(s : ℂ)
(hs : 1 < s.re)
:
-deriv riemannZeta s / riemannZeta s = ∑' (n : ℕ), ↑(ArithmeticFunction.vonMangoldt n) / ↑n ^ s
@[reducible, inline]
Equations
- SmoothedChebyshevIntegrand SmoothingF ε X s = -deriv riemannZeta s / riemannZeta s * MellinTransform (fun (x : ℝ) => ↑(Smooth1 SmoothingF ε x)) s * ↑X ^ s
Instances For
Equations
- SmoothedChebyshev SmoothingF ε X = VerticalIntegral' (SmoothedChebyshevIntegrand SmoothingF ε X) 2
Instances For
theorem
Smooth1_AEStronglyMeasurable
{SmoothingF : ℝ → ℝ}
(diffSmoothingF : ContDiff ℝ 1 SmoothingF)
(ε : ℝ)
(εpos : 0 < ε)
:
MeasureTheory.AEStronglyMeasurable (Smooth1 SmoothingF ε) MeasureTheory.volume
theorem
integrable_x_mul_Smooth1
{SmoothingF : ℝ → ℝ}
(diffSmoothingF : ContDiff ℝ 1 SmoothingF)
(SmoothingFpos : ∀ (x : ℝ), 0 ≤ SmoothingF x)
(suppSmoothingF : Function.support SmoothingF ⊆ Set.Icc (1 / 2) 2)
(mass_one : ∫ (x : ℝ) in Set.Ioi 0, SmoothingF x / x = 1)
(ε : ℝ)
(εpos : 0 < ε)
(ε_lt_one : ε < 1)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => x * Smooth1 SmoothingF ε x) (Set.Ioi 0) MeasureTheory.volume
theorem
continuousAt_Smooth1
{SmoothingF : ℝ → ℝ}
(diffSmoothingF : ContDiff ℝ 1 SmoothingF)
(SmoothingFpos : ∀ (x : ℝ), 0 ≤ SmoothingF x)
(suppSmoothingF : Function.support SmoothingF ⊆ Set.Icc (1 / 2) 2)
(mass_one : ∫ (x : ℝ) in Set.Ioi 0, SmoothingF x / x = 1)
(ε : ℝ)
(εpos : 0 < ε)
(y : ℝ)
(ypos : 0 < y)
:
ContinuousAt (fun (x : ℝ) => Smooth1 SmoothingF ε x) y
theorem
SmoothedChebyshevDirichlet
{SmoothingF : ℝ → ℝ}
(diffSmoothingF : ContDiff ℝ 1 SmoothingF)
(SmoothingFpos : ∀ (x : ℝ), 0 ≤ SmoothingF x)
(suppSmoothingF : Function.support SmoothingF ⊆ Set.Icc (1 / 2) 2)
(mass_one : ∫ (x : ℝ) in Set.Ioi 0, SmoothingF x / x = 1)
(X : ℝ)
(X_pos : 0 < X)
(ε : ℝ)
(εpos : 0 < ε)
(ε_lt_one : ε < 1)
: