Documentation

PrimeNumberTheoremAnd.MediumPNT

theorem LogDerivativeDirichlet (s : ) (hs : 1 < s.re) :
-deriv riemannZeta s / riemannZeta s = ∑' (n : ), (ArithmeticFunction.vonMangoldt n) / n ^ s
@[reducible, inline]
noncomputable abbrev SmoothedChebyshevIntegrand (SmoothingF : ) (ε : ) (X : ) :
Equations
Instances For
    noncomputable def SmoothedChebyshev (SmoothingF : ) (ε : ) (X : ) :
    Equations
    Instances For
      theorem Smooth1_AEStronglyMeasurable {SmoothingF : } (diffSmoothingF : ContDiff 1 SmoothingF) (ε : ) (εpos : 0 < ε) :
      MeasureTheory.AEStronglyMeasurable (Smooth1 SmoothingF ε) MeasureTheory.volume
      theorem integrable_x_mul_Smooth1 {SmoothingF : } (diffSmoothingF : ContDiff 1 SmoothingF) (SmoothingFpos : ∀ (x : ), 0 SmoothingF x) (suppSmoothingF : Function.support SmoothingF Set.Icc (1 / 2) 2) (mass_one : ∫ (x : ) in Set.Ioi 0, SmoothingF x / x = 1) (ε : ) (εpos : 0 < ε) (ε_lt_one : ε < 1) :
      MeasureTheory.IntegrableOn (fun (x : ) => x * Smooth1 SmoothingF ε x) (Set.Ioi 0) MeasureTheory.volume
      theorem vertical_integrable_Smooth1 {SmoothingF : } (diffSmoothingF : ContDiff 1 SmoothingF) (SmoothingFpos : ∀ (x : ), 0 SmoothingF x) (suppSmoothingF : Function.support SmoothingF Set.Icc (1 / 2) 2) (mass_one : ∫ (x : ) in Set.Ioi 0, SmoothingF x / x = 1) (ε : ) (εpos : 0 < ε) :
      MeasureTheory.Integrable (fun (y : ) => ∫ (t : ) in Set.Ioi 0, t ^ (1 + y * Complex.I) * (Smooth1 SmoothingF ε t)) MeasureTheory.volume
      theorem continuousAt_Smooth1 {SmoothingF : } (diffSmoothingF : ContDiff 1 SmoothingF) (SmoothingFpos : ∀ (x : ), 0 SmoothingF x) (suppSmoothingF : Function.support SmoothingF Set.Icc (1 / 2) 2) (mass_one : ∫ (x : ) in Set.Ioi 0, SmoothingF x / x = 1) (ε : ) (εpos : 0 < ε) (y : ) (ypos : 0 < y) :
      ContinuousAt (fun (x : ) => Smooth1 SmoothingF ε x) y
      theorem SmoothedChebyshevDirichlet {SmoothingF : } (diffSmoothingF : ContDiff 1 SmoothingF) (SmoothingFpos : ∀ (x : ), 0 SmoothingF x) (suppSmoothingF : Function.support SmoothingF Set.Icc (1 / 2) 2) (mass_one : ∫ (x : ) in Set.Ioi 0, SmoothingF x / x = 1) (X : ) (X_pos : 0 < X) (ε : ) (εpos : 0 < ε) (ε_lt_one : ε < 1) :
      SmoothedChebyshev SmoothingF ε X = (∑' (n : ), ArithmeticFunction.vonMangoldt n * Smooth1 SmoothingF ε (n / X))
      noncomputable def ChebyshevPsi (x : ) :
      Equations
      Instances For
        theorem SmoothedChebyshevClose {SmoothingF : } (ε : ) (ε_pos : 0 < ε) (suppSmoothingF : Function.support SmoothingF Set.Icc (1 / 2) 2) (SmoothingFnonneg : x > 0, 0 SmoothingF x) (mass_one : ∫ (x : ) in Set.Ioi 0, SmoothingF x / x = 1) (X : ) :
        (fun (X : ) => SmoothedChebyshev SmoothingF ε X - (ChebyshevPsi X)) =O[Filter.atTop] fun (X : ) => ε * X * Real.log X
        theorem MediumPNT :
        ∃ (c : ) (_ : c > 0), (ChebyshevPsi - id) =O[Filter.atTop] fun (x : ) => x * Real.exp (-c * Real.log x ^ (1 / 18))

        *** Prime Number Theorem (Medium Strength) *** The ChebyshevPsi function is asymptotic to x.