Documentation

Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic

Integral over an interval #

In this file we define ∫ x in a..b, f x ∂μ to be ∫ x in Ioc a b, f x ∂μ if a ≤ b and -∫ x in Ioc b a, f x ∂μ if b ≤ a.

Implementation notes #

Avoiding if, min, and max #

In order to avoid ifs in the definition, we define IntervalIntegrable f μ a b as IntegrableOn f (Ioc a b) μ ∧ IntegrableOn f (Ioc b a) μ. For any a, b one of these intervals is empty and the other coincides with Set.uIoc a b = Set.Ioc (min a b) (max a b).

Similarly, we define ∫ x in a..b, f x ∂μ to be ∫ x in Ioc a b, f x ∂μ - ∫ x in Ioc b a, f x ∂μ. Again, for any a, b one of these integrals is zero, and the other gives the expected result.

This way some properties can be translated from integrals over sets without dealing with the cases a ≤ b and b ≤ a separately.

Choice of the interval #

We use integral over Set.uIoc a b = Set.Ioc (min a b) (max a b) instead of one of the other three possible intervals with the same endpoints for two reasons:

Tags #

integral

Integrability on an interval #

def IntervalIntegrable {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] (f : ε) (μ : MeasureTheory.Measure ) (a b : ) :

A function f is called interval integrable with respect to a measure μ on an unordered interval a..b if it is integrable on both intervals (a, b] and (b, a]. One of these intervals is always empty, so this property is equivalent to f being integrable on (min a b, max a b].

Equations
Instances For

    Basic iff's for IntervalIntegrable #

    A function is interval integrable with respect to a given measure μ on a..b if and only if it is integrable on uIoc a b with respect to μ. This is an equivalent definition of IntervalIntegrable.

    If a function is interval integrable with respect to a given measure μ on a..b then it is integrable on uIoc a b with respect to μ.

    theorem IntervalIntegrable.congr {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] [TopologicalSpace.PseudoMetrizableSpace ε] {f : ε} {a b : } {μ : MeasureTheory.Measure } {g : ε} (hf : IntervalIntegrable f μ a b) (h : f =ᵐ[μ.restrict (Set.uIoc a b)] g) :

    Interval integrability is invariant when functions change along discrete sets.

    Interval integrability is invariant when functions change along discrete sets.

    theorem MeasureTheory.Integrable.intervalIntegrable {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b : } {μ : Measure } (hf : Integrable f μ) :

    If a function is integrable with respect to a given measure μ then it is interval integrable with respect to μ on uIcc a b.

    theorem intervalIntegrable_const_iff {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] [TopologicalSpace.PseudoMetrizableSpace ε] {a b : } {μ : MeasureTheory.Measure } {c : ε} (hc : c‖ₑ := by finiteness) :
    IntervalIntegrable (fun (x : ) => c) μ a b c = 0 μ (Set.uIoc a b) <
    @[simp]
    theorem intervalIntegrable_const {E : Type u_5} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } [MeasureTheory.IsLocallyFiniteMeasure μ] {c : E} (hc : c‖ₑ := by finiteness) :
    IntervalIntegrable (fun (x : ) => c) μ a b

    Basic properties of interval integrability #

    theorem IntervalIntegrable.symm {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b : } {μ : MeasureTheory.Measure } (h : IntervalIntegrable f μ a b) :
    @[simp]
    theorem IntervalIntegrable.trans_iterate_Ico {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {μ : MeasureTheory.Measure } [TopologicalSpace.PseudoMetrizableSpace ε] {a : } {m n : } (hmn : m n) (hint : kSet.Ico m n, IntervalIntegrable f μ (a k) (a (k + 1))) :
    IntervalIntegrable f μ (a m) (a n)
    theorem IntervalIntegrable.trans_iterate {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {μ : MeasureTheory.Measure } [TopologicalSpace.PseudoMetrizableSpace ε] {a : } {n : } (hint : k < n, IntervalIntegrable f μ (a k) (a (k + 1))) :
    IntervalIntegrable f μ (a 0) (a n)
    theorem IntervalIntegrable.neg {E : Type u_5} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } {f : E} (h : IntervalIntegrable f μ a b) :
    theorem IntervalIntegrable.enorm {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b : } {μ : MeasureTheory.Measure } (h : IntervalIntegrable f μ a b) :
    IntervalIntegrable (fun (x : ) => f x‖ₑ) μ a b
    theorem IntervalIntegrable.norm {E : Type u_5} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } {f : E} (h : IntervalIntegrable f μ a b) :
    IntervalIntegrable (fun (x : ) => f x) μ a b
    theorem IntervalIntegrable.abs {a b : } {μ : MeasureTheory.Measure } {f : } (h : IntervalIntegrable f μ a b) :
    IntervalIntegrable (fun (x : ) => |f x|) μ a b
    theorem IntervalIntegrable.mono {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b c d : } {μ ν : MeasureTheory.Measure } [TopologicalSpace.PseudoMetrizableSpace ε] (hf : IntervalIntegrable f ν a b) (h1 : Set.uIcc c d Set.uIcc a b) (h2 : μ ν) :
    theorem IntervalIntegrable.mono_fun {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } {f : E} [NormedAddCommGroup F] {g : F} (hf : IntervalIntegrable f μ a b) (hgm : MeasureTheory.AEStronglyMeasurable g (μ.restrict (Set.uIoc a b))) (hle : (fun (x : ) => g x) ≤ᵐ[μ.restrict (Set.uIoc a b)] fun (x : ) => f x) :
    theorem IntervalIntegrable.mono_fun' {E : Type u_5} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } {f : E} {g : } (hg : IntervalIntegrable g μ a b) (hfm : MeasureTheory.AEStronglyMeasurable f (μ.restrict (Set.uIoc a b))) (hle : (fun (x : ) => f x) ≤ᵐ[μ.restrict (Set.uIoc a b)] g) :
    theorem IntervalIntegrable.smul {E : Type u_5} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } {R : Type u_8} [NormedAddCommGroup R] [SMulZeroClass R E] [IsBoundedSMul R E] {f : E} (h : IntervalIntegrable f μ a b) (r : R) :
    IntervalIntegrable (r f) μ a b
    @[simp]
    theorem IntervalIntegrable.add {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f g : ε} {a b : } {μ : MeasureTheory.Measure } [ContinuousAdd ε] (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) :
    IntervalIntegrable (fun (x : ) => f x + g x) μ a b
    @[simp]
    theorem IntervalIntegrable.sub {E : Type u_5} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } {f g : E} (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) :
    IntervalIntegrable (fun (x : ) => f x - g x) μ a b
    theorem IntervalIntegrable.sum {ι : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {a b : } {μ : MeasureTheory.Measure } [ContinuousAdd ε] (s : Finset ι) {f : ιε} (h : is, IntervalIntegrable (f i) μ a b) :
    IntervalIntegrable (∑ is, f i) μ a b
    @[simp]
    theorem IntervalIntegrable.finsum {ι : Type u_1} {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {a b : } {μ : MeasureTheory.Measure } [ContinuousAdd ε] [TopologicalSpace.PseudoMetrizableSpace ε] {f : ιε} (h : ∀ (i : ι), IntervalIntegrable (f i) μ a b) :
    IntervalIntegrable (∑ᶠ (i : ι), f i) μ a b

    Finsums of interval integrable functions are interval integrable.

    theorem IntervalIntegrable.mul_continuousOn {A : Type u_7} [NormedRing A] {a b : } {μ : MeasureTheory.Measure } {f g : A} (hf : IntervalIntegrable f μ a b) (hg : ContinuousOn g (Set.uIcc a b)) :
    IntervalIntegrable (fun (x : ) => f x * g x) μ a b
    theorem IntervalIntegrable.continuousOn_mul {A : Type u_7} [NormedRing A] {a b : } {μ : MeasureTheory.Measure } {f g : A} (hf : IntervalIntegrable f μ a b) (hg : ContinuousOn g (Set.uIcc a b)) :
    IntervalIntegrable (fun (x : ) => g x * f x) μ a b
    @[simp]
    theorem IntervalIntegrable.const_mul {A : Type u_7} [NormedRing A] {a b : } {μ : MeasureTheory.Measure } {f : A} (hf : IntervalIntegrable f μ a b) (c : A) :
    IntervalIntegrable (fun (x : ) => c * f x) μ a b
    @[simp]
    theorem IntervalIntegrable.mul_const {A : Type u_7} [NormedRing A] {a b : } {μ : MeasureTheory.Measure } {f : A} (hf : IntervalIntegrable f μ a b) (c : A) :
    IntervalIntegrable (fun (x : ) => f x * c) μ a b
    theorem IntervalIntegrable.smul_continuousOn {𝕜 : Type u_2} {E : Type u_5} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } {f : 𝕜} {g : E} [NormedRing 𝕜] [Module 𝕜 E] [NormSMulClass 𝕜 E] (hf : IntervalIntegrable f μ a b) (hg : ContinuousOn g (Set.uIcc a b)) :
    IntervalIntegrable (fun (x : ) => f x g x) μ a b
    theorem IntervalIntegrable.continuousOn_smul {𝕜 : Type u_2} {E : Type u_5} [NormedAddCommGroup E] {a b : } {μ : MeasureTheory.Measure } {f : 𝕜} {g : E} [NormedRing 𝕜] [Module 𝕜 E] [NormSMulClass 𝕜 E] (hg : IntervalIntegrable g μ a b) (hf : ContinuousOn f (Set.uIcc a b)) :
    IntervalIntegrable (fun (x : ) => f x g x) μ a b
    @[simp]
    theorem IntervalIntegrable.div_const {a b : } {μ : MeasureTheory.Measure } {𝕜 : Type u_8} {f : 𝕜} [NormedDivisionRing 𝕜] (h : IntervalIntegrable f μ a b) (c : 𝕜) :
    IntervalIntegrable (fun (x : ) => f x / c) μ a b
    theorem IntervalIntegrable.comp_mul_left {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b : } [TopologicalSpace.PseudoMetrizableSpace ε] (hf : IntervalIntegrable f MeasureTheory.volume a b) {c : } (h : f (min a b)‖ₑ := by finiteness) (h' : f (c * min (a / c) (b / c))‖ₑ := by finiteness) :
    IntervalIntegrable (fun (x : ) => f (c * x)) MeasureTheory.volume (a / c) (b / c)
    theorem IntervalIntegrable.comp_mul_left_iff {E : Type u_5} [NormedAddCommGroup E] {a b : } {f : E} {c : } (hc : c 0) (h : f (min a b)‖ₑ := by finiteness) (h' : f (c * min (a / c) (b / c))‖ₑ := by finiteness) :
    theorem IntervalIntegrable.comp_mul_right {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b : } [TopologicalSpace.PseudoMetrizableSpace ε] (hf : IntervalIntegrable f MeasureTheory.volume a b) {c : } (h : f (min a b)‖ₑ := by finiteness) (h' : f (c * min (a / c) (b / c))‖ₑ := by finiteness) :
    IntervalIntegrable (fun (x : ) => f (x * c)) MeasureTheory.volume (a / c) (b / c)
    theorem IntervalIntegrable.comp_add_right {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b : } [TopologicalSpace.PseudoMetrizableSpace ε] (hf : IntervalIntegrable f MeasureTheory.volume a b) (c : ) (h : f (min a b)‖ₑ := by finiteness) :
    IntervalIntegrable (fun (x : ) => f (x + c)) MeasureTheory.volume (a - c) (b - c)
    theorem IntervalIntegrable.comp_add_left {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b : } [TopologicalSpace.PseudoMetrizableSpace ε] (hf : IntervalIntegrable f MeasureTheory.volume a b) (c : ) (h : f (min a b)‖ₑ := by finiteness) :
    IntervalIntegrable (fun (x : ) => f (c + x)) MeasureTheory.volume (a - c) (b - c)
    theorem IntervalIntegrable.comp_sub_right {ε : Type u_3} [TopologicalSpace ε] [ENormedAddCommMonoid ε] {f : ε} {a b : } [TopologicalSpace.PseudoMetrizableSpace ε] (hf : IntervalIntegrable f MeasureTheory.volume a b) (c : ) (h : f (min a b)‖ₑ := by finiteness) :
    IntervalIntegrable (fun (x : ) => f (x - c)) MeasureTheory.volume (a + c) (b + c)
    theorem IntervalIntegrable.iff_comp_neg {E : Type u_5} [NormedAddCommGroup E] {a b : } {f : E} (h : f (min a b)‖ₑ := by finiteness) :
    theorem IntervalIntegrable.comp_sub_left {E : Type u_5} [NormedAddCommGroup E] {a b : } {f : E} (hf : IntervalIntegrable f MeasureTheory.volume a b) (c : ) (h : f (min a b)‖ₑ := by finiteness) :
    IntervalIntegrable (fun (x : ) => f (c - x)) MeasureTheory.volume (c - a) (c - b)
    theorem IntervalIntegrable.comp_sub_left_iff {E : Type u_5} [NormedAddCommGroup E] {a b : } {f : E} (c : ) (h : f (min a b)‖ₑ := by finiteness) :

    Continuous functions are interval integrable #

    A continuous function on is IntervalIntegrable with respect to any locally finite measure ν on ℝ.

    Monotone and antitone functions are integral integrable #

    Interval integrability of functions with even or odd parity #

    theorem intervalIntegrable_of_even₀ {E : Type u_5} [NormedAddCommGroup E] {f : E} (h₁f : ∀ (x : ), f x = f (-x)) (h₂f : ∀ (x : ), 0 < xIntervalIntegrable f MeasureTheory.volume 0 x) {t : } (ht : f (min 0 t)‖ₑ := by finiteness) :

    An even function is interval integrable (with respect to the volume measure) on every interval of the form 0..x if it is interval integrable (with respect to the volume measure) on every interval of the form 0..x, for positive x.

    See intervalIntegrable_of_even for a stronger result.

    theorem intervalIntegrable_of_even {E : Type u_5} [NormedAddCommGroup E] {f : E} (h₁f : ∀ (x : ), f x = f (-x)) (h₂f : ∀ (x : ), 0 < xIntervalIntegrable f MeasureTheory.volume 0 x) {a b : } (ha : f (min 0 a)‖ₑ := by finiteness) (hb : f (min 0 b)‖ₑ := by finiteness) :

    An even function is interval integrable (with respect to the volume measure) on every interval if it is interval integrable (with respect to the volume measure) on every interval of the form 0..x, for positive x.

    theorem intervalIntegrable_of_odd₀ {E : Type u_5} [NormedAddCommGroup E] {f : E} (h₁f : ∀ (x : ), -f x = f (-x)) (h₂f : ∀ (x : ), 0 < xIntervalIntegrable f MeasureTheory.volume 0 x) {t : } (ht : f (min 0 t)‖ₑ := by finiteness) :

    An odd function is interval integrable (with respect to the volume measure) on every interval of the form 0..x if it is interval integrable (with respect to the volume measure) on every interval of the form 0..x, for positive x.

    See intervalIntegrable_of_odd for a stronger result.

    theorem intervalIntegrable_of_odd {E : Type u_5} [NormedAddCommGroup E] {f : E} (h₁f : ∀ (x : ), -f x = f (-x)) (h₂f : ∀ (x : ), 0 < xIntervalIntegrable f MeasureTheory.volume 0 x) {a b : } (ha : f (min 0 a)‖ₑ := by finiteness) (hb : f (min 0 b)‖ₑ := by finiteness) :

    An odd function is interval integrable (with respect to the volume measure) on every interval iff it is interval integrable (with respect to the volume measure) on every interval of the form 0..x, for positive x.

    Limits of intervals #

    theorem Filter.Tendsto.eventually_intervalIntegrable_ae {ι : Type u_1} {E : Type u_5} [NormedAddCommGroup E] {f : E} {μ : MeasureTheory.Measure } {l l' : Filter } (hfm : StronglyMeasurableAtFilter f l' μ) [TendstoIxxClass Set.Ioc l l'] [l'.IsMeasurablyGenerated] ( : μ.FiniteAtFilter l') {c : E} (hf : Tendsto f (l'MeasureTheory.ae μ) (nhds c)) {u v : ι} {lt : Filter ι} (hu : Tendsto u lt l) (hv : Tendsto v lt l) :
    ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (u t) (v t)

    Let l' be a measurably generated filter; let l be a of filter such that each s ∈ l' eventually includes Ioc u v as both u and v tend to l. Let μ be a measure finite at l'.

    Suppose that f : ℝ → E has a finite limit at l' ⊓ ae μ. Then f is interval integrable on u..v provided that both u and v tend to l.

    Typeclass instances allow Lean to find l' based on l but not vice versa, so apply Tendsto.eventually_intervalIntegrable_ae will generate goals Filter and TendstoIxxClass Ioc ?m_1 l'.

    theorem Filter.Tendsto.eventually_intervalIntegrable {ι : Type u_1} {E : Type u_5} [NormedAddCommGroup E] {f : E} {μ : MeasureTheory.Measure } {l l' : Filter } (hfm : StronglyMeasurableAtFilter f l' μ) [TendstoIxxClass Set.Ioc l l'] [l'.IsMeasurablyGenerated] ( : μ.FiniteAtFilter l') {c : E} (hf : Tendsto f l' (nhds c)) {u v : ι} {lt : Filter ι} (hu : Tendsto u lt l) (hv : Tendsto v lt l) :
    ∀ᶠ (t : ι) in lt, IntervalIntegrable f μ (u t) (v t)

    Let l' be a measurably generated filter; let l be a of filter such that each s ∈ l' eventually includes Ioc u v as both u and v tend to l. Let μ be a measure finite at l'.

    Suppose that f : ℝ → E has a finite limit at l. Then f is interval integrable on u..v provided that both u and v tend to l.

    Typeclass instances allow Lean to find l' based on l but not vice versa, so apply Tendsto.eventually_intervalIntegrable will generate goals Filter and TendstoIxxClass Ioc ?m_1 l'.

    Interval integral: definition and basic properties #

    In this section we define ∫ x in a..b, f x ∂μ as ∫ x in Ioc a b, f x ∂μ - ∫ x in Ioc b a, f x ∂μ and prove some basic properties.

    def intervalIntegral {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] (f : E) (a b : ) (μ : MeasureTheory.Measure ) :
    E

    The interval integral ∫ x in a..b, f x ∂μ is defined as ∫ x in Ioc a b, f x ∂μ - ∫ x in Ioc b a, f x ∂μ. If a ≤ b, then it equals ∫ x in Ioc a b, f x ∂μ, otherwise it equals -∫ x in Ioc b a, f x ∂μ.

    Equations
    Instances For

      Pretty printer defined by notation3 command.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The interval integral ∫ x in a..b, f x ∂μ is defined as ∫ x in Ioc a b, f x ∂μ - ∫ x in Ioc b a, f x ∂μ. If a ≤ b, then it equals ∫ x in Ioc a b, f x ∂μ, otherwise it equals -∫ x in Ioc b a, f x ∂μ.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The interval integral ∫ x in a..b, f x is defined as ∫ x in Ioc a b, f x - ∫ x in Ioc b a, f x. If a ≤ b, then it equals ∫ x in Ioc a b, f x, otherwise it equals -∫ x in Ioc b a, f x.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Pretty printer defined by notation3 command.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem intervalIntegral.integral_of_le {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } (h : a b) :
              (x : ) in a..b, f x μ = (x : ) in Set.Ioc a b, f x μ
              @[simp]
              theorem intervalIntegral.integral_same {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a : } {f : E} {μ : MeasureTheory.Measure } :
              (x : ) in a..a, f x μ = 0
              theorem intervalIntegral.integral_symm {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {f : E} {μ : MeasureTheory.Measure } (a b : ) :
              (x : ) in b..a, f x μ = - (x : ) in a..b, f x μ
              theorem intervalIntegral.integral_of_ge {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } (h : b a) :
              (x : ) in a..b, f x μ = - (x : ) in Set.Ioc b a, f x μ
              theorem intervalIntegral.intervalIntegral_eq_integral_uIoc {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] (f : E) (a b : ) (μ : MeasureTheory.Measure ) :
              (x : ) in a..b, f x μ = (if a b then 1 else -1) (x : ) in Set.uIoc a b, f x μ
              theorem intervalIntegral.abs_intervalIntegral_eq (f : ) (a b : ) (μ : MeasureTheory.Measure ) :
              | (x : ) in a..b, f x μ| = | (x : ) in Set.uIoc a b, f x μ|
              theorem intervalIntegral.integral_cases {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {μ : MeasureTheory.Measure } (f : E) (a b : ) :
              (x : ) in a..b, f x μ { (x : ) in Set.uIoc a b, f x μ, - (x : ) in Set.uIoc a b, f x μ}
              theorem intervalIntegral.integral_undef {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } (h : ¬IntervalIntegrable f μ a b) :
              (x : ) in a..b, f x μ = 0
              theorem intervalIntegral.norm_integral_min_max {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {μ : MeasureTheory.Measure } (f : E) :
              (x : ) in min a b..max a b, f x μ = (x : ) in a..b, f x μ
              @[deprecated intervalIntegral.norm_integral_eq_norm_integral_uIoc (since := "2025-04-19")]

              Alias of intervalIntegral.norm_integral_eq_norm_integral_uIoc.

              @[deprecated intervalIntegral.norm_integral_le_integral_norm_uIoc (since := "2025-04-19")]

              Alias of intervalIntegral.norm_integral_le_integral_norm_uIoc.

              theorem intervalIntegral.norm_integral_le_integral_norm {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } (h : a b) :
              (x : ) in a..b, f x μ (x : ) in a..b, f x μ
              theorem intervalIntegral.norm_integral_le_abs_of_norm_le {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } {g : } (h : ∀ᵐ (t : ) μ.restrict (Set.uIoc a b), f t g t) (hbound : IntervalIntegrable g μ a b) :
              (t : ) in a..b, f t μ | (t : ) in a..b, g t μ|
              theorem intervalIntegral.norm_integral_le_of_norm_le {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } {g : } (hab : a b) (h : ∀ᵐ (t : ) μ, t Set.Ioc a bf t g t) (hbound : IntervalIntegrable g μ a b) :
              (t : ) in a..b, f t μ (t : ) in a..b, g t μ
              theorem intervalIntegral.norm_integral_le_of_norm_le_const_ae {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b C : } {f : E} (h : ∀ᵐ (x : ), x Set.uIoc a bf x C) :
              (x : ) in a..b, f x C * |b - a|
              theorem intervalIntegral.norm_integral_le_of_norm_le_const {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b C : } {f : E} (h : xSet.uIoc a b, f x C) :
              (x : ) in a..b, f x C * |b - a|
              @[simp]
              theorem intervalIntegral.integral_add {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f g : E} {μ : MeasureTheory.Measure } (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) :
              (x : ) in a..b, f x + g x μ = (x : ) in a..b, f x μ + (x : ) in a..b, g x μ
              theorem intervalIntegral.integral_finset_sum {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {μ : MeasureTheory.Measure } {ι : Type u_8} {s : Finset ι} {f : ιE} (h : is, IntervalIntegrable (f i) μ a b) :
              (x : ) in a..b, is, f i x μ = is, (x : ) in a..b, f i x μ
              @[simp]
              theorem intervalIntegral.integral_neg {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } :
              (x : ) in a..b, -f x μ = - (x : ) in a..b, f x μ
              @[simp]
              theorem intervalIntegral.integral_sub {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f g : E} {μ : MeasureTheory.Measure } (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) :
              (x : ) in a..b, f x - g x μ = (x : ) in a..b, f x μ - (x : ) in a..b, g x μ
              @[simp]
              theorem intervalIntegral.integral_smul {𝕜 : Type u_2} {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {μ : MeasureTheory.Measure } [NormedDivisionRing 𝕜] [Module 𝕜 E] [NormSMulClass 𝕜 E] [SMulCommClass 𝕜 E] (r : 𝕜) (f : E) :
              (x : ) in a..b, r f x μ = r (x : ) in a..b, f x μ

              Compatibility with scalar multiplication. Note this assumes 𝕜 is a division ring in order to ensure that for c ≠ 0, c • f is integrable iff f is. For scalar multiplication by more general rings assuming integrability, see IntervalIntegrable.integral_smul.

              theorem IntervalIntegrable.integral_smul {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {μ : MeasureTheory.Measure } {R : Type u_8} [NormedRing R] [Module R E] [IsBoundedSMul R E] [SMulCommClass R E] {f : E} (r : R) (hf : IntervalIntegrable f μ a b) :
              (x : ) in a..b, r f x μ = r (x : ) in a..b, f x μ
              @[simp]
              theorem intervalIntegral.integral_smul_const {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {μ : MeasureTheory.Measure } [CompleteSpace E] {𝕜 : Type u_8} [RCLike 𝕜] [NormedSpace 𝕜 E] (f : 𝕜) (c : E) :
              (x : ) in a..b, f x c μ = ( (x : ) in a..b, f x μ) c
              @[simp]
              theorem intervalIntegral.integral_const_mul {𝕜 : Type u_2} {a b : } {μ : MeasureTheory.Measure } [NormedDivisionRing 𝕜] [NormedAlgebra 𝕜] (r : 𝕜) (f : 𝕜) :
              (x : ) in a..b, r * f x μ = r * (x : ) in a..b, f x μ
              @[simp]
              theorem intervalIntegral.integral_mul_const {a b : } {μ : MeasureTheory.Measure } {𝕜 : Type u_8} [RCLike 𝕜] (r : 𝕜) (f : 𝕜) :
              (x : ) in a..b, f x * r μ = ( (x : ) in a..b, f x μ) * r
              @[simp]
              theorem intervalIntegral.integral_div {a b : } {μ : MeasureTheory.Measure } {𝕜 : Type u_8} [RCLike 𝕜] (r : 𝕜) (f : 𝕜) :
              (x : ) in a..b, f x / r μ = ( (x : ) in a..b, f x μ) / r
              theorem intervalIntegral.integral_const' {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {μ : MeasureTheory.Measure } [CompleteSpace E] (c : E) :
              (x : ) in a..b, c μ = (μ.real (Set.Ioc a b) - μ.real (Set.Ioc b a)) c
              @[simp]
              theorem intervalIntegral.integral_const {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } [CompleteSpace E] (c : E) :
              (x : ) in a..b, c = (b - a) c
              theorem intervalIntegral.integral_smul_measure {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } (c : ENNReal) :
              (x : ) in a..b, f x c μ = c.toReal (x : ) in a..b, f x μ
              theorem RCLike.intervalIntegral_ofReal {𝕜 : Type u_8} [RCLike 𝕜] {a b : } {μ : MeasureTheory.Measure } {f : } :
              (x : ) in a..b, (f x) μ = ( (x : ) in a..b, f x μ)
              theorem intervalIntegral.integral_ofReal {a b : } {μ : MeasureTheory.Measure } {f : } :
              (x : ) in a..b, (f x) μ = ( (x : ) in a..b, f x μ)
              theorem ContinuousLinearMap.intervalIntegral_apply {𝕜 : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace E] {μ : MeasureTheory.Measure } [RCLike 𝕜] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {a b : } {φ : F →L[𝕜] E} ( : IntervalIntegrable φ μ a b) (v : F) :
              ( (x : ) in a..b, φ x μ) v = (x : ) in a..b, (φ x) v μ
              theorem ContinuousLinearMap.intervalIntegral_comp_comm {𝕜 : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace E] {a b : } {μ : MeasureTheory.Measure } {f : E} [RCLike 𝕜] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace F] [CompleteSpace F] [CompleteSpace E] (L : E →L[𝕜] F) (hf : IntervalIntegrable f μ a b) :
              (x : ) in a..b, L (f x) μ = L ( (x : ) in a..b, f x μ)

              Basic arithmetic #

              Includes addition, scalar multiplication and affine transformations.

              @[simp]
              theorem intervalIntegral.integral_comp_mul_right {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) :
              (x : ) in a..b, f (x * c) = c⁻¹ (x : ) in a * c..b * c, f x
              @[simp]
              theorem intervalIntegral.smul_integral_comp_mul_right {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c : ) :
              c (x : ) in a..b, f (x * c) = (x : ) in a * c..b * c, f x
              @[simp]
              theorem intervalIntegral.integral_comp_mul_left {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) :
              (x : ) in a..b, f (c * x) = c⁻¹ (x : ) in c * a..c * b, f x
              @[simp]
              theorem intervalIntegral.smul_integral_comp_mul_left {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c : ) :
              c (x : ) in a..b, f (c * x) = (x : ) in c * a..c * b, f x
              @[simp]
              theorem intervalIntegral.integral_comp_div {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) :
              (x : ) in a..b, f (x / c) = c (x : ) in a / c..b / c, f x
              @[simp]
              theorem intervalIntegral.inv_smul_integral_comp_div {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c : ) :
              c⁻¹ (x : ) in a..b, f (x / c) = (x : ) in a / c..b / c, f x
              @[simp]
              theorem intervalIntegral.integral_comp_add_right {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (d : ) :
              (x : ) in a..b, f (x + d) = (x : ) in a + d..b + d, f x
              @[simp]
              theorem intervalIntegral.integral_comp_add_left {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (d : ) :
              (x : ) in a..b, f (d + x) = (x : ) in d + a..d + b, f x
              @[simp]
              theorem intervalIntegral.integral_comp_mul_add {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) (d : ) :
              (x : ) in a..b, f (c * x + d) = c⁻¹ (x : ) in c * a + d..c * b + d, f x
              @[simp]
              theorem intervalIntegral.smul_integral_comp_mul_add {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c d : ) :
              c (x : ) in a..b, f (c * x + d) = (x : ) in c * a + d..c * b + d, f x
              @[simp]
              theorem intervalIntegral.integral_comp_add_mul {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) (d : ) :
              (x : ) in a..b, f (d + c * x) = c⁻¹ (x : ) in d + c * a..d + c * b, f x
              @[simp]
              theorem intervalIntegral.smul_integral_comp_add_mul {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c d : ) :
              c (x : ) in a..b, f (d + c * x) = (x : ) in d + c * a..d + c * b, f x
              @[simp]
              theorem intervalIntegral.integral_comp_div_add {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) (d : ) :
              (x : ) in a..b, f (x / c + d) = c (x : ) in a / c + d..b / c + d, f x
              @[simp]
              theorem intervalIntegral.inv_smul_integral_comp_div_add {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c d : ) :
              c⁻¹ (x : ) in a..b, f (x / c + d) = (x : ) in a / c + d..b / c + d, f x
              @[simp]
              theorem intervalIntegral.integral_comp_add_div {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) (d : ) :
              (x : ) in a..b, f (d + x / c) = c (x : ) in d + a / c..d + b / c, f x
              @[simp]
              theorem intervalIntegral.inv_smul_integral_comp_add_div {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c d : ) :
              c⁻¹ (x : ) in a..b, f (d + x / c) = (x : ) in d + a / c..d + b / c, f x
              @[simp]
              theorem intervalIntegral.integral_comp_mul_sub {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) (d : ) :
              (x : ) in a..b, f (c * x - d) = c⁻¹ (x : ) in c * a - d..c * b - d, f x
              @[simp]
              theorem intervalIntegral.smul_integral_comp_mul_sub {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c d : ) :
              c (x : ) in a..b, f (c * x - d) = (x : ) in c * a - d..c * b - d, f x
              @[simp]
              theorem intervalIntegral.integral_comp_sub_mul {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) (d : ) :
              (x : ) in a..b, f (d - c * x) = c⁻¹ (x : ) in d - c * b..d - c * a, f x
              @[simp]
              theorem intervalIntegral.smul_integral_comp_sub_mul {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c d : ) :
              c (x : ) in a..b, f (d - c * x) = (x : ) in d - c * b..d - c * a, f x
              @[simp]
              theorem intervalIntegral.integral_comp_div_sub {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) (d : ) :
              (x : ) in a..b, f (x / c - d) = c (x : ) in a / c - d..b / c - d, f x
              @[simp]
              theorem intervalIntegral.inv_smul_integral_comp_div_sub {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c d : ) :
              c⁻¹ (x : ) in a..b, f (x / c - d) = (x : ) in a / c - d..b / c - d, f x
              @[simp]
              theorem intervalIntegral.integral_comp_sub_div {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } (f : E) (hc : c 0) (d : ) :
              (x : ) in a..b, f (d - x / c) = c (x : ) in d - b / c..d - a / c, f x
              @[simp]
              theorem intervalIntegral.inv_smul_integral_comp_sub_div {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (c d : ) :
              c⁻¹ (x : ) in a..b, f (d - x / c) = (x : ) in d - b / c..d - a / c, f x
              @[simp]
              theorem intervalIntegral.integral_comp_sub_right {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (d : ) :
              (x : ) in a..b, f (x - d) = (x : ) in a - d..b - d, f x
              @[simp]
              theorem intervalIntegral.integral_comp_sub_left {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) (d : ) :
              (x : ) in a..b, f (d - x) = (x : ) in d - b..d - a, f x
              @[simp]
              theorem intervalIntegral.integral_comp_neg {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } (f : E) :
              (x : ) in a..b, f (-x) = (x : ) in -b..-a, f x

              Integral is an additive function of the interval #

              In this section we prove that ∫ x in a..b, f x ∂μ + ∫ x in b..c, f x ∂μ = ∫ x in a..c, f x ∂μ as well as a few other identities trivially equivalent to this one. We also prove that ∫ x in a..b, f x ∂μ = ∫ x, f x ∂μ provided that support f ⊆ Ioc a b.

              theorem intervalIntegral.integral_congr {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {f g : E} {μ : MeasureTheory.Measure } {a b : } (h : Set.EqOn f g (Set.uIcc a b)) :
              (x : ) in a..b, f x μ = (x : ) in a..b, g x μ

              If two functions are equal in the relevant interval, their interval integrals are also equal.

              theorem intervalIntegral.integral_add_adjacent_intervals_cancel {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } {f : E} {μ : MeasureTheory.Measure } (hab : IntervalIntegrable f μ a b) (hbc : IntervalIntegrable f μ b c) :
              (x : ) in a..b, f x μ + (x : ) in b..c, f x μ + (x : ) in c..a, f x μ = 0
              theorem intervalIntegral.integral_add_adjacent_intervals {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } {f : E} {μ : MeasureTheory.Measure } (hab : IntervalIntegrable f μ a b) (hbc : IntervalIntegrable f μ b c) :
              (x : ) in a..b, f x μ + (x : ) in b..c, f x μ = (x : ) in a..c, f x μ
              theorem intervalIntegral.sum_integral_adjacent_intervals_Ico {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {f : E} {μ : MeasureTheory.Measure } {a : } {m n : } (hmn : m n) (hint : kSet.Ico m n, IntervalIntegrable f μ (a k) (a (k + 1))) :
              kFinset.Ico m n, (x : ) in a k..a (k + 1), f x μ = (x : ) in a m..a n, f x μ
              theorem intervalIntegral.sum_integral_adjacent_intervals {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {f : E} {μ : MeasureTheory.Measure } {a : } {n : } (hint : k < n, IntervalIntegrable f μ (a k) (a (k + 1))) :
              kFinset.range n, (x : ) in a k..a (k + 1), f x μ = (x : ) in a 0..a n, f x μ
              theorem intervalIntegral.integral_interval_sub_left {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c : } {f : E} {μ : MeasureTheory.Measure } (hab : IntervalIntegrable f μ a b) (hac : IntervalIntegrable f μ a c) :
              (x : ) in a..b, f x μ - (x : ) in a..c, f x μ = (x : ) in c..b, f x μ
              theorem intervalIntegral.integral_interval_add_interval_comm {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c d : } {f : E} {μ : MeasureTheory.Measure } (hab : IntervalIntegrable f μ a b) (hcd : IntervalIntegrable f μ c d) (hac : IntervalIntegrable f μ a c) :
              (x : ) in a..b, f x μ + (x : ) in c..d, f x μ = (x : ) in a..d, f x μ + (x : ) in c..b, f x μ
              theorem intervalIntegral.integral_interval_sub_interval_comm {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c d : } {f : E} {μ : MeasureTheory.Measure } (hab : IntervalIntegrable f μ a b) (hcd : IntervalIntegrable f μ c d) (hac : IntervalIntegrable f μ a c) :
              (x : ) in a..b, f x μ - (x : ) in c..d, f x μ = (x : ) in a..c, f x μ - (x : ) in b..d, f x μ
              theorem intervalIntegral.integral_interval_sub_interval_comm' {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b c d : } {f : E} {μ : MeasureTheory.Measure } (hab : IntervalIntegrable f μ a b) (hcd : IntervalIntegrable f μ c d) (hac : IntervalIntegrable f μ a c) :
              (x : ) in a..b, f x μ - (x : ) in c..d, f x μ = (x : ) in d..b, f x μ - (x : ) in c..a, f x μ
              theorem intervalIntegral.integral_Iic_sub_Iic {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } (ha : MeasureTheory.IntegrableOn f (Set.Iic a) μ) (hb : MeasureTheory.IntegrableOn f (Set.Iic b) μ) :
              (x : ) in Set.Iic b, f x μ - (x : ) in Set.Iic a, f x μ = (x : ) in a..b, f x μ
              theorem intervalIntegral.integral_Iic_add_Ioi {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {b : } {f : E} {μ : MeasureTheory.Measure } (h_left : MeasureTheory.IntegrableOn f (Set.Iic b) μ) (h_right : MeasureTheory.IntegrableOn f (Set.Ioi b) μ) :
              (x : ) in Set.Iic b, f x μ + (x : ) in Set.Ioi b, f x μ = (x : ), f x μ
              theorem intervalIntegral.integral_Iio_add_Ici {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {b : } {f : E} {μ : MeasureTheory.Measure } (h_left : MeasureTheory.IntegrableOn f (Set.Iio b) μ) (h_right : MeasureTheory.IntegrableOn f (Set.Ici b) μ) :
              (x : ) in Set.Iio b, f x μ + (x : ) in Set.Ici b, f x μ = (x : ), f x μ

              If μ is a finite measure then ∫ x in a..b, c ∂μ = (μ (Iic b) - μ (Iic a)) • c.

              theorem intervalIntegral.integral_congr_ae' {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f g : E} {μ : MeasureTheory.Measure } (h : ∀ᵐ (x : ) μ, x Set.Ioc a bf x = g x) (h' : ∀ᵐ (x : ) μ, x Set.Ioc b af x = g x) :
              (x : ) in a..b, f x μ = (x : ) in a..b, g x μ
              theorem intervalIntegral.integral_congr_ae {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f g : E} {μ : MeasureTheory.Measure } (h : ∀ᵐ (x : ) μ, x Set.uIoc a bf x = g x) :
              (x : ) in a..b, f x μ = (x : ) in a..b, g x μ
              theorem intervalIntegral.integral_congr_ae_restrict {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f g : E} {μ : MeasureTheory.Measure } (h : f =ᵐ[μ.restrict (Set.uIoc a b)] g) :
              (x : ) in a..b, f x μ = (x : ) in a..b, g x μ

              Integrals are equal for functions that agree almost everywhere for the restricted measure.

              theorem intervalIntegral.integral_congr_codiscreteWithin {a b : } {f₁ f₂ : } (hf : f₁ =ᶠ[Filter.codiscreteWithin (Set.uIoc a b)] f₂) :
              (x : ) in a..b, f₁ x = (x : ) in a..b, f₂ x

              Integrals are invariant when functions change along discrete sets.

              theorem intervalIntegral.integral_zero_ae {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {a b : } {f : E} {μ : MeasureTheory.Measure } (h : ∀ᵐ (x : ) μ, x Set.uIoc a bf x = 0) :
              (x : ) in a..b, f x μ = 0
              theorem intervalIntegral.integral_indicator {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {f : E} {μ : MeasureTheory.Measure } {a₁ a₂ a₃ : } (h : a₂ Set.Icc a₁ a₃) :
              (x : ) in a₁..a₃, {x : | x a₂}.indicator f x μ = (x : ) in a₁..a₂, f x μ
              theorem intervalIntegral.integral_eq_zero_iff_of_le_of_nonneg_ae {f : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : 0 ≤ᵐ[μ.restrict (Set.Ioc a b)] f) (hfi : IntervalIntegrable f μ a b) :
              (x : ) in a..b, f x μ = 0 f =ᵐ[μ.restrict (Set.Ioc a b)] 0
              theorem intervalIntegral.integral_eq_zero_iff_of_nonneg_ae {f : } {a b : } {μ : MeasureTheory.Measure } (hf : 0 ≤ᵐ[μ.restrict (Set.Ioc a b Set.Ioc b a)] f) (hfi : IntervalIntegrable f μ a b) :
              (x : ) in a..b, f x μ = 0 f =ᵐ[μ.restrict (Set.Ioc a b Set.Ioc b a)] 0
              theorem intervalIntegral.integral_pos_iff_support_of_nonneg_ae' {f : } {a b : } {μ : MeasureTheory.Measure } (hf : 0 ≤ᵐ[μ.restrict (Set.uIoc a b)] f) (hfi : IntervalIntegrable f μ a b) :
              0 < (x : ) in a..b, f x μ a < b 0 < μ (Function.support f Set.Ioc a b)

              If f is nonnegative and integrable on the unordered interval Set.uIoc a b, then its integral over a..b is positive if and only if a < b and the measure of Function.support f ∩ Set.Ioc a b is positive.

              theorem intervalIntegral.integral_pos_iff_support_of_nonneg_ae {f : } {a b : } {μ : MeasureTheory.Measure } (hf : 0 ≤ᵐ[μ] f) (hfi : IntervalIntegrable f μ a b) :
              0 < (x : ) in a..b, f x μ a < b 0 < μ (Function.support f Set.Ioc a b)

              If f is nonnegative a.e.-everywhere and it is integrable on the unordered interval Set.uIoc a b, then its integral over a..b is positive if and only if a < b and the measure of Function.support f ∩ Set.Ioc a b is positive.

              theorem intervalIntegral.intervalIntegral_pos_of_pos_on {f : } {a b : } (hfi : IntervalIntegrable f MeasureTheory.volume a b) (hpos : xSet.Ioo a b, 0 < f x) (hab : a < b) :
              0 < (x : ) in a..b, f x

              If f : ℝ → ℝ is integrable on (a, b] for real numbers a < b, and positive on the interior of the interval, then its integral over a..b is strictly positive.

              theorem intervalIntegral.intervalIntegral_pos_of_pos {f : } {a b : } (hfi : IntervalIntegrable f MeasureTheory.volume a b) (hpos : ∀ (x : ), 0 < f x) (hab : a < b) :
              0 < (x : ) in a..b, f x

              If f : ℝ → ℝ is strictly positive everywhere, and integrable on (a, b] for real numbers a < b, then its integral over a..b is strictly positive. (See intervalIntegral_pos_of_pos_on for a version only assuming positivity of f on (a, b) rather than everywhere.)

              theorem intervalIntegral.integral_lt_integral_of_ae_le_of_measure_setOf_lt_ne_zero {f g : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hfi : IntervalIntegrable f μ a b) (hgi : IntervalIntegrable g μ a b) (hle : f ≤ᵐ[μ.restrict (Set.Ioc a b)] g) (hlt : (μ.restrict (Set.Ioc a b)) {x : | f x < g x} 0) :
              (x : ) in a..b, f x μ < (x : ) in a..b, g x μ

              If f and g are two functions that are interval integrable on a..b, a ≤ b, f x ≤ g x for a.e. x ∈ Set.Ioc a b, and f x < g x on a subset of Set.Ioc a b of nonzero measure, then ∫ x in a..b, f x ∂μ < ∫ x in a..b, g x ∂μ.

              theorem intervalIntegral.integral_lt_integral_of_continuousOn_of_le_of_exists_lt {f g : } {a b : } (hab : a < b) (hfc : ContinuousOn f (Set.Icc a b)) (hgc : ContinuousOn g (Set.Icc a b)) (hle : xSet.Ioc a b, f x g x) (hlt : cSet.Icc a b, f c < g c) :
              (x : ) in a..b, f x < (x : ) in a..b, g x

              If f and g are continuous on [a, b], a < b, f x ≤ g x on this interval, and f c < g c at some point c ∈ [a, b], then ∫ x in a..b, f x < ∫ x in a..b, g x.

              theorem intervalIntegral.integral_nonneg_of_ae_restrict {f : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : 0 ≤ᵐ[μ.restrict (Set.Icc a b)] f) :
              0 (u : ) in a..b, f u μ
              theorem intervalIntegral.integral_nonneg_of_ae {f : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : 0 ≤ᵐ[μ] f) :
              0 (u : ) in a..b, f u μ
              theorem intervalIntegral.integral_nonneg_of_forall {f : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : ∀ (u : ), 0 f u) :
              0 (u : ) in a..b, f u μ
              theorem intervalIntegral.integral_nonneg {f : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : uSet.Icc a b, 0 f u) :
              0 (u : ) in a..b, f u μ
              theorem intervalIntegral.abs_integral_le_integral_abs {f : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) :
              | (x : ) in a..b, f x μ| (x : ) in a..b, |f x| μ
              theorem intervalIntegral.integral_pos {f : } {a b : } (hab : a < b) (hfc : ContinuousOn f (Set.Icc a b)) (hle : xSet.Ioc a b, 0 f x) (hlt : cSet.Icc a b, 0 < f c) :
              0 < (x : ) in a..b, f x
              theorem intervalIntegral.integral_mono_interval {f : } {a b : } {μ : MeasureTheory.Measure } {c d : } (hca : c a) (hab : a b) (hbd : b d) (hf : 0 ≤ᵐ[μ.restrict (Set.Ioc c d)] f) (hfi : IntervalIntegrable f μ c d) :
              (x : ) in a..b, f x μ (x : ) in c..d, f x μ
              theorem intervalIntegral.abs_integral_mono_interval {f : } {a b : } {μ : MeasureTheory.Measure } {c d : } (h : Set.uIoc a b Set.uIoc c d) (hf : 0 ≤ᵐ[μ.restrict (Set.uIoc c d)] f) (hfi : IntervalIntegrable f μ c d) :
              | (x : ) in a..b, f x μ| | (x : ) in c..d, f x μ|
              theorem intervalIntegral.integral_mono_ae_restrict {f g : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) (h : f ≤ᵐ[μ.restrict (Set.Icc a b)] g) :
              (u : ) in a..b, f u μ (u : ) in a..b, g u μ
              theorem intervalIntegral.integral_mono_ae {f g : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) (h : f ≤ᵐ[μ] g) :
              (u : ) in a..b, f u μ (u : ) in a..b, g u μ
              theorem intervalIntegral.integral_mono_on {f g : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) (h : xSet.Icc a b, f x g x) :
              (u : ) in a..b, f u μ (u : ) in a..b, g u μ
              theorem intervalIntegral.integral_mono_on_of_le_Ioo {f g : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) [MeasureTheory.NoAtoms μ] (h : xSet.Ioo a b, f x g x) :
              (u : ) in a..b, f u μ (u : ) in a..b, g u μ
              theorem intervalIntegral.integral_mono {f g : } {a b : } {μ : MeasureTheory.Measure } (hab : a b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) (h : f g) :
              (u : ) in a..b, f u μ (u : ) in a..b, g u μ
              theorem MeasureTheory.Integrable.hasSum_intervalIntegral {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {μ : Measure } {f : E} (hfi : Integrable f μ) (y : ) :
              HasSum (fun (n : ) => (x : ) in y + n..y + n + 1, f x μ) ( (x : ), f x μ)
              theorem MeasureTheory.Integrable.hasSum_intervalIntegral_comp_add_int {E : Type u_5} [NormedAddCommGroup E] [NormedSpace E] {f : E} (hfi : Integrable f volume) :
              HasSum (fun (n : ) => (x : ) in 0..1, f (x + n)) ( (x : ), f x)