Documentation

PrimeNumberTheoremAnd.Mathlib.NumberTheory.Sieve.SelbergBounds

Bounds for the Selberg sieve #

This file proves a number of results to help bound Sieve.selbergSum

Main Results #

theorem Sieve.prodDistinctPrimes_squarefree (s : Finset ) (h : ps, Nat.Prime p) :
Squarefree (∏ ps, p)
Equations
Instances For
    theorem Sieve.prod_factors_one_div_compMult_ge (M : ) (f : ArithmeticFunction ) (hf : CompletelyMultiplicative f) (hf_nonneg : ∀ (n : ), 0 f n) (d : ) (hd : Squarefree d) (hf_size : ∀ (n : ), Nat.Prime nn df n < 1) :
    f d * pd.primeFactors, 1 / (1 - f p) pd.primeFactors, nFinset.Icc 1 M, f (p ^ n)
    theorem Sieve.prod_factors_sum_pow_compMult (M : ) (hM : M 0) (f : ArithmeticFunction ) (hf : CompletelyMultiplicative f) (d : ) (hd : Squarefree d) :
    pd.primeFactors, nFinset.Icc 1 M, f (p ^ n) = m{x(d ^ M).divisors | d x}, f m
    theorem Sieve.prod_primes_dvd_of_dvd (P : ) {s : Finset } (h : ps, p P) (h' : ps, Nat.Prime p) :
    ps, p P
    theorem Sieve.sqrt_le_self (x : ) (hx : 1 x) :
    x x
    theorem Sieve.Nat.squarefree_dvd_pow (a b N : ) (ha : Squarefree a) (hab : a b ^ N) :
    a b