Documentation

Mathlib.Topology.NhdsKer

Neighborhoods kernel of a set #

In Mathlib/Topology/Defs/Filter.lean, nhdsKer s is defined to be the intersection of all neighborhoods of s. Note that this construction has no standard name in the literature.

In this file we prove basic properties of this operation.

@[simp]
theorem mem_nhdsKer_singleton {X : Type u_2} [TopologicalSpace X] {x y : X} :
theorem nhdsKer_def {X : Type u_2} [TopologicalSpace X] (s : Set X) :
theorem mem_nhdsKer {X : Type u_2} [TopologicalSpace X] {s : Set X} {x : X} :
x nhdsKer s ∀ (U : Set X), IsOpen Us Ux U
theorem subset_nhdsKer_iff {X : Type u_2} [TopologicalSpace X] {s t : Set X} :
s nhdsKer t ∀ (U : Set X), IsOpen Ut Us U
theorem subset_nhdsKer {X : Type u_2} [TopologicalSpace X] {s : Set X} :
theorem nhdsKer_minimal {X : Type u_2} [TopologicalSpace X] {s t : Set X} (h₁ : s t) (h₂ : IsOpen t) :
theorem IsOpen.nhdsKer_eq {X : Type u_2} [TopologicalSpace X] {s : Set X} (h : IsOpen s) :
theorem IsOpen.nhdsKer_subset {X : Type u_2} [TopologicalSpace X] {s t : Set X} (ht : IsOpen t) :
nhdsKer s t s t
@[simp]
theorem nhdsKer_iUnion {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] (s : ιSet X) :
nhdsKer (⋃ (i : ι), s i) = ⋃ (i : ι), nhdsKer (s i)
theorem nhdsKer_biUnion {X : Type u_2} [TopologicalSpace X] {ι : Type u_3} (s : Set ι) (t : ιSet X) :
nhdsKer (⋃ is, t i) = is, nhdsKer (t i)
@[simp]
theorem nhdsKer_union {X : Type u_2} [TopologicalSpace X] (s t : Set X) :
@[simp]
theorem nhdsKer_sUnion {X : Type u_2} [TopologicalSpace X] (S : Set (Set X)) :
nhdsKer (⋃₀ S) = sS, nhdsKer s
theorem mem_nhdsKer_iff_specializes {X : Type u_2} [TopologicalSpace X] {s : Set X} {x : X} :
x nhdsKer s ys, x y
theorem nhdsKer_subset_nhdsKer {X : Type u_2} [TopologicalSpace X] {s t : Set X} (h : s t) :

This name was used to be used for the Iff version, see nhdsKer_subset_nhdsKer_iff_nhdsSet.

theorem nhdsKer_iInter_subset {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] {s : ιSet X} :
nhdsKer (⋂ (i : ι), s i) ⋂ (i : ι), nhdsKer (s i)
theorem nhdsKer_sInter_subset {X : Type u_2} [TopologicalSpace X] {s : Set (Set X)} :
nhdsKer (⋂₀ s) xs, nhdsKer x
@[simp]
@[simp]
theorem nhdsKer_eq_empty {X : Type u_2} [TopologicalSpace X] {s : Set X} :
@[simp]
theorem nhdsSet_nhdsKer {X : Type u_2} [TopologicalSpace X] (s : Set X) :
@[simp]
theorem nhdsKer_nhdsKer {X : Type u_2} [TopologicalSpace X] (s : Set X) :
theorem nhdsKer_pair {X : Type u_3} {Y : Type u_4} [TopologicalSpace X] [TopologicalSpace Y] (x : X) (y : Y) :
theorem nhdsKer_prod {X : Type u_2} [TopologicalSpace X] {Y : Type u_3} [TopologicalSpace Y] (s : Set X) (t : Set Y) :
theorem nhdsKer_singleton_pi {ι : Type u_3} {X : ιType u_4} [(i : ι) → TopologicalSpace (X i)] (p : (i : ι) → X i) :
nhdsKer {p} = Set.univ.pi fun (i : ι) => nhdsKer {p i}
theorem nhdsKer_pi {ι : Type u_3} {X : ιType u_4} [(i : ι) → TopologicalSpace (X i)] (s : (i : ι) → Set (X i)) :
nhdsKer (Set.univ.pi s) = Set.univ.pi fun (i : ι) => nhdsKer (s i)