Documentation

Mathlib.Topology.Instances.Real.Lemmas

Topological properties of ℝ #

theorem Real.isTopologicalBasis_Ioo_rat :
TopologicalSpace.IsTopologicalBasis (⋃ (a : ), ⋃ (b : ), ⋃ (_ : a < b), {Set.Ioo a b})
theorem Real.mem_closure_iff {s : Set } {x : } :
x closure s ε > 0, ys, |y - x| < ε
theorem Real.uniformContinuous_inv (s : Set ) {r : } (r0 : 0 < r) (H : xs, r |x|) :
UniformContinuous fun (p : s) => (↑p)⁻¹
theorem Real.continuous_inv :
Continuous fun (a : { r : // r 0 }) => (↑a)⁻¹
theorem Real.uniformContinuous_mul (s : Set ( × )) {r₁ r₂ : } (H : xs, |x.1| < r₁ |x.2| < r₂) :
UniformContinuous fun (p : s) => (↑p).1 * (↑p).2
theorem Real.exists_seq_rat_strictMono_tendsto (x : ) :
∃ (u : ), StrictMono u (∀ (n : ), (u n) < x) Filter.Tendsto (fun (x : ) => (u x)) Filter.atTop (nhds x)
theorem Real.exists_seq_rat_strictAnti_tendsto (x : ) :
∃ (u : ), StrictAnti u (∀ (n : ), x < (u n)) Filter.Tendsto (fun (x : ) => (u x)) Filter.atTop (nhds x)
theorem Function.Periodic.compact_of_continuous {α : Type u} [TopologicalSpace α] {f : α} {c : } (hp : Periodic f c) (hc : c 0) (hf : Continuous f) :

A continuous, periodic function has compact range.

theorem Function.Periodic.isBounded_of_continuous {α : Type u} [PseudoMetricSpace α] {f : α} {c : } (hp : Periodic f c) (hc : c 0) (hf : Continuous f) :

A continuous, periodic function is bounded.

A monotone, bounded above sequence f : ℕ → ℝ on Ici k has the finite limit sSup (f '' Ici k).

An antitone, bounded below sequence f : ℕ → ℝ on Ici k has the finite limit sInf (f '' Ici k).

theorem Real.isLUB_of_tendsto_monotone_bddAbove {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {f : ι} {x : } (h_tto : Filter.Tendsto f Filter.atTop (nhds x)) (h_mon : Monotone f) (h_bdd : BddAbove (Set.range f)) :

The limit of a monotone, bounded above function f : ι → ℝ is a least upper bound of the function.

theorem Real.isGLB_of_tendsto_antitone_bddBelow {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {f : ι} {x : } (h_tto : Filter.Tendsto f Filter.atTop (nhds x)) (h_ant : Antitone f) (h_bdd : BddBelow (Set.range f)) :

The limit of an antitone, bounded below function f : ι → ℝ is a greatest lower bound of the function.

theorem Real.isLUB_of_tendsto_monotoneOn_bddAbove_nat_Ici {f : } {k : } {x : } (h_tto : Filter.Tendsto f Filter.atTop (nhds x)) (h_mon : MonotoneOn f (Set.Ici k)) (h_bdd : BddAbove (f '' Set.Ici k)) :
IsLUB (f '' Set.Ici k) x

The limit of an antitone, bounded below sequence f : ℕ → ℝ on Ici k is a least upper bound of the sequence.

theorem Real.isGLB_of_tendsto_antitoneOn_bddBelow_nat_Ici {f : } {k : } {x : } (h_tto : Filter.Tendsto f Filter.atTop (nhds x)) (h_ant : AntitoneOn f (Set.Ici k)) (h_bdd : BddBelow (f '' Set.Ici k)) :
IsGLB (f '' Set.Ici k) x

The limit of an antitone, bounded below sequence f : ℕ → ℝ on Ici k is a greatest lower bound of the sequence.