Topological properties of ℝ #
theorem
Real.exists_seq_rat_strictMono_tendsto
(x : ℝ)
:
∃ (u : ℕ → ℚ), StrictMono u ∧ (∀ (n : ℕ), ↑(u n) < x) ∧ Filter.Tendsto (fun (x : ℕ) => ↑(u x)) Filter.atTop (nhds x)
theorem
Real.exists_seq_rat_strictAnti_tendsto
(x : ℝ)
:
∃ (u : ℕ → ℚ), StrictAnti u ∧ (∀ (n : ℕ), x < ↑(u n)) ∧ Filter.Tendsto (fun (x : ℕ) => ↑(u x)) Filter.atTop (nhds x)
theorem
Function.Periodic.compact_of_continuous
{α : Type u}
[TopologicalSpace α]
{f : ℝ → α}
{c : ℝ}
(hp : Periodic f c)
(hc : c ≠ 0)
(hf : Continuous f)
:
A continuous, periodic function has compact range.
theorem
Function.Periodic.isBounded_of_continuous
{α : Type u}
[PseudoMetricSpace α]
{f : ℝ → α}
{c : ℝ}
(hp : Periodic f c)
(hc : c ≠ 0)
(hf : Continuous f)
:
A continuous, periodic function is bounded.
theorem
Real.tendsto_atTop_csSup_of_monotoneOn_bddAbove_nat_Ici
{f : ℕ → ℝ}
{k : ℕ}
(h_mon : MonotoneOn f (Set.Ici k))
(h_bdd : BddAbove (f '' Set.Ici k))
:
Filter.Tendsto f Filter.atTop (nhds (sSup (f '' Set.Ici k)))
A monotone, bounded above sequence f : ℕ → ℝ on Ici k has the finite
limit sSup (f '' Ici k).
theorem
Real.tendsto_atTop_csInf_of_antitoneOn_bddBelow_nat_Ici
{f : ℕ → ℝ}
{k : ℕ}
(h_ant : AntitoneOn f (Set.Ici k))
(h_bdd : BddBelow (f '' Set.Ici k))
:
Filter.Tendsto f Filter.atTop (nhds (sInf (f '' Set.Ici k)))
An antitone, bounded below sequence f : ℕ → ℝ on Ici k has the finite
limit sInf (f '' Ici k).
theorem
Real.isLUB_of_tendsto_monotone_bddAbove
{ι : Type u_1}
[Preorder ι]
[Nonempty ι]
[IsDirected ι fun (x1 x2 : ι) => x1 ≤ x2]
{f : ι → ℝ}
{x : ℝ}
(h_tto : Filter.Tendsto f Filter.atTop (nhds x))
(h_mon : Monotone f)
(h_bdd : BddAbove (Set.range f))
:
The limit of a monotone, bounded above function f : ι → ℝ is a least upper bound
of the function.
theorem
Real.isGLB_of_tendsto_antitone_bddBelow
{ι : Type u_1}
[Preorder ι]
[Nonempty ι]
[IsDirected ι fun (x1 x2 : ι) => x1 ≤ x2]
{f : ι → ℝ}
{x : ℝ}
(h_tto : Filter.Tendsto f Filter.atTop (nhds x))
(h_ant : Antitone f)
(h_bdd : BddBelow (Set.range f))
:
The limit of an antitone, bounded below function f : ι → ℝ is a greatest lower bound
of the function.
theorem
Real.isLUB_of_tendsto_monotoneOn_bddAbove_nat_Ici
{f : ℕ → ℝ}
{k : ℕ}
{x : ℝ}
(h_tto : Filter.Tendsto f Filter.atTop (nhds x))
(h_mon : MonotoneOn f (Set.Ici k))
(h_bdd : BddAbove (f '' Set.Ici k))
:
The limit of an antitone, bounded below sequence f : ℕ → ℝ on Ici k is a least
upper bound of the sequence.
theorem
Real.isGLB_of_tendsto_antitoneOn_bddBelow_nat_Ici
{f : ℕ → ℝ}
{k : ℕ}
{x : ℝ}
(h_tto : Filter.Tendsto f Filter.atTop (nhds x))
(h_ant : AntitoneOn f (Set.Ici k))
(h_bdd : BddBelow (f '' Set.Ici k))
:
The limit of an antitone, bounded below sequence f : ℕ → ℝ on Ici k is a greatest
lower bound of the sequence.