The additive circle over ℝ #
Results specific to the additive circle over ℝ.
The "additive circle" ℝ ⧸ (ℤ ∙ p) is compact.
instance
AddCircle.instProperlyDiscontinuousVAddSubtypeAddOppositeRealMemAddSubgroupOpZmultiples
(p : ℝ)
:
The action on ℝ by right multiplication of its the subgroup zmultiples p (the multiples of
p:ℝ) is properly discontinuous.
@[reducible, inline]
The unit circle ℝ ⧸ ℤ.
Equations
Instances For
The AddMonoidHom from ZMod N to ℝ / ℤ sending j mod N to j / N mod 1.
Equations
- ZMod.toAddCircle = (ZMod.lift N) ⟨AddMonoidHom.mk' (fun (j : ℤ) => ↑(↑j / ↑N)) ⋯, ⋯⟩
Instances For
Explicit formula for toCircle j. Note that this is "evil" because it uses ZMod.val. Where
possible, it is recommended to lift j to ℤ and use toAddCircle_intCast instead.
@[simp]
@[simp]