Documentation

Mathlib.Topology.Algebra.Valued.ValuedField

Valued fields and their completions #

In this file we study the topology of a field K endowed with a valuation (in our application to adic spaces, K will be the valuation field associated to some valuation on a ring, defined in valuation.basic).

We already know from valuation.topology that one can build a topology on K which makes it a topological ring.

The first goal is to show K is a topological field, ie inversion is continuous at every non-zero element.

The next goal is to prove K is a completable topological field. This gives us a completion hat K which is a topological field. We also prove that K is automatically separated, so the map from K to hat K is injective.

Then we extend the valuation given on K to a valuation on hat K.

theorem Valuation.inversion_estimate {K : Type u_1} [DivisionRing K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] (v : Valuation K Ξ“β‚€) {x y : K} {Ξ³ : Ξ“β‚€Λ£} (y_ne : y β‰  0) (h : v (x - y) < min (↑γ * (v y * v y)) (v y)) :
v (x⁻¹ - y⁻¹) < ↑γ
theorem Valuation.inversion_estimate' {K : Type u_1} [DivisionRing K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] (v : Valuation K Ξ“β‚€) {x y r s : K} (y_ne : y β‰  0) (hr : r β‰  0) (hs : s β‰  0) (h : v (x - y) < min (v s / v r * (v y * v y)) (v y)) :
v (x⁻¹ - y⁻¹) * v r < v s
@[instance 100]
instance Valued.isTopologicalDivisionRing {K : Type u_1} [DivisionRing K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [Valued K Ξ“β‚€] :

The topology coming from a valuation on a division ring makes it a topological division ring [BouAC, VI.5.1 middle of Proposition 1]

@[instance 100]
instance ValuedRing.separated {K : Type u_1} [DivisionRing K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [Valued K Ξ“β‚€] :

A valued division ring is separated.

theorem Valued.continuous_valuation {K : Type u_1} [DivisionRing K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [Valued K Ξ“β‚€] :
@[instance 100]
instance Valued.completable {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] :

A valued field is completable.

theorem Valued.valuation_isClosedMap {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] :
noncomputable def Valued.extension {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] :
UniformSpace.Completion K β†’ Ξ“β‚€

The extension of the valuation of a valued field to the completion of the field.

Equations
Instances For
    theorem Valued.continuous_extension {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] :
    @[simp]
    theorem Valued.extension_extends {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] (x : K) :
    extension ↑x = v x
    noncomputable def Valued.extensionValuation {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] :

    the extension of a valuation on a division ring to its completion.

    Equations
    Instances For
      @[simp]
      theorem Valued.extensionValuation_apply_coe {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] (x : K) :
      @[simp]
      theorem Valued.extension_eq_zero_iff {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] {x : UniformSpace.Completion K} :
      theorem Valued.continuous_extensionValuation {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] :
      theorem Valued.exists_coe_eq_v {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] (x : UniformSpace.Completion K) :
      βˆƒ (r : K), extensionValuation x = v r
      theorem Valued.closure_coe_completion_v_lt {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] {Ξ³ : Ξ“β‚€Λ£} :
      theorem Valued.closure_coe_completion_v_mul_v_lt {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] {r s : K} (hr : r β‰  0) (hs : s β‰  0) :
      noncomputable instance Valued.valuedCompletion {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] :
      Equations
      @[simp]
      theorem Valued.valuedCompletion_apply {K : Type u_1} [Field K] {Ξ“β‚€ : Type u_2} [LinearOrderedCommGroupWithZero Ξ“β‚€] [hv : Valued K Ξ“β‚€] (x : K) :
      v ↑x = v x
      @[reducible]
      def Valued.integer (K : Type u_1) [Field K] {Ξ“β‚€ : outParam (Type u_2)} [LinearOrderedCommGroupWithZero Ξ“β‚€] [vK : Valued K Ξ“β‚€] :

      A Valued version of Valuation.integer, enabling the notation π’ͺ[K] for the valuation integers of a valued field K.

      Equations
      Instances For

        A Valued version of Valuation.integer, enabling the notation π’ͺ[K] for the valuation integers of a valued field K.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[reducible]
          def Valued.maximalIdeal (K : Type u_1) [Field K] {Ξ“β‚€ : outParam (Type u_2)} [LinearOrderedCommGroupWithZero Ξ“β‚€] [vK : Valued K Ξ“β‚€] :
          Ideal β†₯(integer K)

          An abbreviation for IsLocalRing.maximalIdeal π’ͺ[K] of a valued field K, enabling the notation 𝓂[K] for the maximal ideal in π’ͺ[K] of a valued field K.

          Equations
          Instances For

            An abbreviation for IsLocalRing.maximalIdeal π’ͺ[K] of a valued field K, enabling the notation 𝓂[K] for the maximal ideal in π’ͺ[K] of a valued field K.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[reducible]
              def Valued.ResidueField (K : Type u_1) [Field K] {Ξ“β‚€ : outParam (Type u_2)} [LinearOrderedCommGroupWithZero Ξ“β‚€] [vK : Valued K Ξ“β‚€] :
              Type u_1

              An abbreviation for IsLocalRing.ResidueField π’ͺ[K] of a Valued instance, enabling the notation 𝓀[K] for the residue field of a valued field K.

              Equations
              Instances For

                An abbreviation for IsLocalRing.ResidueField π’ͺ[K] of a Valued instance, enabling the notation 𝓀[K] for the residue field of a valued field K.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For