Definition of nilpotent elements #
This file proves basic facts about nilpotent elements.
For results that require further theory, see Mathlib/RingTheory/Nilpotent/Basic.lean
and Mathlib/RingTheory/Nilpotent/Lemmas.lean.
Main definitions #
theorem
IsNilpotent.map
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
{r : R}
{F : Type u_3}
[FunLike F R S]
[MonoidWithZeroHomClass F R S]
(hr : IsNilpotent r)
(f : F)
:
IsNilpotent (f r)
theorem
IsNilpotent.map_iff
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
{r : R}
{F : Type u_3}
[FunLike F R S]
[MonoidWithZeroHomClass F R S]
{f : F}
(hf : Function.Injective ⇑f)
:
theorem
IsUnit.isNilpotent_mul_unit_of_commute_iff
{R : Type u_1}
[MonoidWithZero R]
{r u : R}
(hu : IsUnit u)
(h_comm : Commute r u)
:
theorem
IsUnit.isNilpotent_unit_mul_of_commute_iff
{R : Type u_1}
[MonoidWithZero R]
{r u : R}
(hu : IsUnit u)
(h_comm : Commute r u)
:
If x is nilpotent, the nilpotency class is the smallest natural number k such that
x ^ k = 0. If x is not nilpotent, the nilpotency class takes the junk value 0.
Instances For
@[simp]
theorem
nilpotencyClass_eq_zero_of_subsingleton
{R : Type u_1}
{x : R}
[Zero R]
[Pow R ℕ]
[Subsingleton R]
:
theorem
isNilpotent_of_pos_nilpotencyClass
{R : Type u_1}
{x : R}
[Zero R]
[Pow R ℕ]
(hx : 0 < nilpotencyClass x)
:
@[simp]
@[simp]
theorem
pow_pred_nilpotencyClass
{R : Type u_1}
{x : R}
[MonoidWithZero R]
[Nontrivial R]
(hx : IsNilpotent x)
:
theorem
eq_zero_of_nilpotencyClass_eq_one
{R : Type u_1}
{x : R}
[MonoidWithZero R]
(hx : nilpotencyClass x = 1)
:
@[simp]
theorem
isReduced_of_injective
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
{F : Type u_3}
[FunLike F R S]
[MonoidWithZeroHomClass F R S]
(f : F)
(hf : Function.Injective ⇑f)
[IsReduced S]
:
theorem
Commute.isNilpotent_mul_right
{R : Type u_1}
{x y : R}
[Semiring R]
(h_comm : Commute x y)
(h : IsNilpotent x)
:
IsNilpotent (x * y)
theorem
Commute.isNilpotent_mul_left
{R : Type u_1}
{x y : R}
[Semiring R]
(h_comm : Commute x y)
(h : IsNilpotent y)
:
IsNilpotent (x * y)