Maximal ideal of local rings #
We prove basic properties of the maximal ideal of a local ring.
instance
LocalRing.maximalIdeal.isMaximal
(R : Type u_1)
[CommSemiring R]
[LocalRing R]
:
(LocalRing.maximalIdeal R).IsMaximal
Equations
- ⋯ = ⋯
theorem
LocalRing.maximal_ideal_unique
(R : Type u_1)
[CommSemiring R]
[LocalRing R]
:
∃! I : Ideal R, I.IsMaximal
theorem
LocalRing.eq_maximalIdeal
{R : Type u_1}
[CommSemiring R]
[LocalRing R]
{I : Ideal R}
(hI : I.IsMaximal)
:
theorem
LocalRing.le_maximalIdeal
{R : Type u_1}
[CommSemiring R]
[LocalRing R]
{J : Ideal R}
(hJ : J ≠ ⊤)
:
@[simp]
theorem
LocalRing.mem_maximalIdeal
{R : Type u_1}
[CommSemiring R]
[LocalRing R]
(x : R)
:
x ∈ LocalRing.maximalIdeal R ↔ x ∈ nonunits R
theorem
LocalRing.not_mem_maximalIdeal
{R : Type u_1}
[CommSemiring R]
[LocalRing R]
{x : R}
:
x ∉ LocalRing.maximalIdeal R ↔ IsUnit x
An element x
of a commutative local semiring is not contained in the maximal ideal
iff it is a unit.
theorem
LocalRing.isField_iff_maximalIdeal_eq
{R : Type u_1}
[CommSemiring R]
[LocalRing R]
:
IsField R ↔ LocalRing.maximalIdeal R = ⊥
theorem
LocalRing.maximalIdeal_le_jacobson
{R : Type u_1}
[CommRing R]
[LocalRing R]
(I : Ideal R)
:
LocalRing.maximalIdeal R ≤ I.jacobson
theorem
LocalRing.jacobson_eq_maximalIdeal
{R : Type u_1}
[CommRing R]
[LocalRing R]
(I : Ideal R)
(h : I ≠ ⊤)
:
I.jacobson = LocalRing.maximalIdeal R
theorem
LocalRing.ker_eq_maximalIdeal
{R : Type u_1}
{K : Type u_3}
[CommRing R]
[LocalRing R]
[Field K]
(φ : R →+* K)
(hφ : Function.Surjective ⇑φ)
:
theorem
LocalRing.of_nilradical_isMaximal
{R : Type u_4}
[CommSemiring R]
[h : (nilradical R).IsMaximal]
:
noncomputable def
localizationEquivSelfOfNilradicalIsMaximal
{R : Type u_4}
[CommSemiring R]
{S : Type u_5}
[CommSemiring S]
[Algebra R S]
{M : Submonoid R}
[h : (nilradical R).IsMaximal]
(h' : 0 ∉ M)
[IsLocalization M S]
:
Let S
be the localization of a commutative semiring R
at a submonoid M
that does not
contain 0. If the nilradical of R
is maximal then there is a R
-algebra isomorphism between
R
and S
.