Documentation

Mathlib.RingTheory.LocalRing.MaximalIdeal.Basic

Maximal ideal of local rings #

We prove basic properties of the maximal ideal of a local ring.

Equations
  • =
theorem LocalRing.maximal_ideal_unique (R : Type u_1) [CommSemiring R] [LocalRing R] :
∃! I : Ideal R, I.IsMaximal
theorem LocalRing.eq_maximalIdeal {R : Type u_1} [CommSemiring R] [LocalRing R] {I : Ideal R} (hI : I.IsMaximal) :

An element x of a commutative local semiring is not contained in the maximal ideal iff it is a unit.

theorem LocalRing.jacobson_eq_maximalIdeal {R : Type u_1} [CommRing R] [LocalRing R] (I : Ideal R) (h : I ) :
noncomputable def localizationEquivSelfOfNilradicalIsMaximal {R : Type u_4} [CommSemiring R] {S : Type u_5} [CommSemiring S] [Algebra R S] {M : Submonoid R} [h : (nilradical R).IsMaximal] (h' : 0M) [IsLocalization M S] :

Let S be the localization of a commutative semiring R at a submonoid M that does not contain 0. If the nilradical of R is maximal then there is a R-algebra isomorphism between R and S.

Equations
Instances For