Primary ideals #
A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.
Main definitions #
Implementation details #
Uses a specialized phrasing of Submodule.IsPrimary to have better API-piercing usage.
@[reducible, inline]
A proper ideal I is primary as a submodule.
Equations
Instances For
theorem
Ideal.isPrimary_of_isMaximal_radical
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(hi : I.radical.IsMaximal)
:
theorem
Ideal.IsPrimary.comap
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommSemiring S]
{I : Ideal S}
(hI : I.IsPrimary)
(φ : R →+* S)
:
(Ideal.comap φ I).IsPrimary