Lexicographic order on Pi types #
This file defines the lexicographic order for Pi types. a
is less than b
if a i = b i
for all
i
up to some point k
, and a k < b k
.
Notation #
Πₗ i, α i
: Pi type equipped with the lexicographic order. Type synonym ofΠ i, α i
.
See also #
Related files are:
The notation Πₗ i, α i
refers to a pi type equipped with the lexicographic order.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Pi.toLex_apply
{ι : Type u_1}
{β : ι → Type u_2}
(x : (i : ι) → β i)
(i : ι)
:
toLex x i = x i
theorem
Pi.lex_lt_of_lt
{ι : Type u_1}
{β : ι → Type u_2}
[(i : ι) → PartialOrder (β i)]
{r : ι → ι → Prop}
(hwf : WellFounded r)
{x : (i : ι) → β i}
{y : (i : ι) → β i}
(hlt : x < y)
:
theorem
Pi.isTrichotomous_lex
{ι : Type u_1}
{β : ι → Type u_2}
(r : ι → ι → Prop)
(s : {i : ι} → β i → β i → Prop)
[∀ (i : ι), IsTrichotomous (β i) s]
(wf : WellFounded r)
:
IsTrichotomous ((i : ι) → β i) (Pi.Lex r s)
instance
Pi.Lex.isStrictOrder
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[(a : ι) → PartialOrder (β a)]
:
IsStrictOrder (Lex ((i : ι) → β i)) fun (x1 x2 : Lex ((i : ι) → β i)) => x1 < x2
Equations
- ⋯ = ⋯
instance
Pi.instPartialOrderLexForallOfLinearOrder
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[(a : ι) → PartialOrder (β a)]
:
PartialOrder (Lex ((i : ι) → β i))
Equations
- Pi.instPartialOrderLexForallOfLinearOrder = partialOrderOfSO fun (x1 x2 : Lex ((i : ι) → β i)) => x1 < x2
noncomputable instance
Pi.instLinearOrderLexForallOfWellFoundedLT
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(a : ι) → LinearOrder (β a)]
:
LinearOrder (Lex ((i : ι) → β i))
Πₗ i, α i
is a linear order if the original order is well-founded.
Equations
- Pi.instLinearOrderLexForallOfWellFoundedLT = linearOrderOfSTO fun (x1 x2 : Lex ((i : ι) → (fun (i : ι) => β i) i)) => x1 < x2
theorem
Pi.toLex_monotone
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(i : ι) → PartialOrder (β i)]
:
Monotone ⇑toLex
theorem
Pi.toLex_strictMono
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(i : ι) → PartialOrder (β i)]
:
StrictMono ⇑toLex
@[simp]
theorem
Pi.lt_toLex_update_self_iff
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(i : ι) → PartialOrder (β i)]
{x : (i : ι) → β i}
{i : ι}
{a : β i}
:
toLex x < toLex (Function.update x i a) ↔ x i < a
@[simp]
theorem
Pi.toLex_update_lt_self_iff
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(i : ι) → PartialOrder (β i)]
{x : (i : ι) → β i}
{i : ι}
{a : β i}
:
toLex (Function.update x i a) < toLex x ↔ a < x i
@[simp]
theorem
Pi.le_toLex_update_self_iff
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(i : ι) → PartialOrder (β i)]
{x : (i : ι) → β i}
{i : ι}
{a : β i}
:
toLex x ≤ toLex (Function.update x i a) ↔ x i ≤ a
@[simp]
theorem
Pi.toLex_update_le_self_iff
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(i : ι) → PartialOrder (β i)]
{x : (i : ι) → β i}
{i : ι}
{a : β i}
:
toLex (Function.update x i a) ≤ toLex x ↔ a ≤ x i
instance
Pi.instOrderBotLexForallOfWellFoundedLT
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(a : ι) → PartialOrder (β a)]
[(a : ι) → OrderBot (β a)]
:
Equations
- Pi.instOrderBotLexForallOfWellFoundedLT = OrderBot.mk ⋯
instance
Pi.instOrderTopLexForallOfWellFoundedLT
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(a : ι) → PartialOrder (β a)]
[(a : ι) → OrderTop (β a)]
:
Equations
- Pi.instOrderTopLexForallOfWellFoundedLT = OrderTop.mk ⋯
instance
Pi.instBoundedOrderLexForallOfWellFoundedLT
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[(a : ι) → PartialOrder (β a)]
[(a : ι) → BoundedOrder (β a)]
:
BoundedOrder (Lex ((a : ι) → β a))
Equations
- Pi.instBoundedOrderLexForallOfWellFoundedLT = BoundedOrder.mk
instance
Pi.instDenselyOrderedLexForall
{ι : Type u_1}
{β : ι → Type u_2}
[Preorder ι]
[(i : ι) → LT (β i)]
[∀ (i : ι), DenselyOrdered (β i)]
:
DenselyOrdered (Lex ((i : ι) → β i))
Equations
- ⋯ = ⋯
theorem
Pi.Lex.noMaxOrder'
{ι : Type u_1}
{β : ι → Type u_2}
[Preorder ι]
[(i : ι) → LT (β i)]
(i : ι)
[NoMaxOrder (β i)]
:
NoMaxOrder (Lex ((i : ι) → β i))
instance
Pi.instNoMaxOrderLexForallOfWellFoundedLTOfNonempty
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[Nonempty ι]
[(i : ι) → PartialOrder (β i)]
[∀ (i : ι), NoMaxOrder (β i)]
:
NoMaxOrder (Lex ((i : ι) → β i))
Equations
- ⋯ = ⋯
instance
Pi.instNoMinOrderLexForallOfWellFoundedLTOfNonempty
{ι : Type u_1}
{β : ι → Type u_2}
[LinearOrder ι]
[WellFoundedLT ι]
[Nonempty ι]
[(i : ι) → PartialOrder (β i)]
[∀ (i : ι), NoMinOrder (β i)]
:
NoMinOrder (Lex ((i : ι) → β i))
Equations
- ⋯ = ⋯
theorem
Pi.lex_desc
{ι : Type u_1}
{α : Type u_3}
[Preorder ι]
[DecidableEq ι]
[Preorder α]
{f : ι → α}
{i : ι}
{j : ι}
(h₁ : i ≤ j)
(h₂ : f j < f i)
:
toLex (f ∘ ⇑(Equiv.swap i j)) < toLex f
If we swap two strictly decreasing values in a function, then the result is lexicographically smaller than the original function.