Cyclotomic extensions #
Let A and B be commutative rings with Algebra A B. For S : Set ℕ, we define a class
IsCyclotomicExtension S A B expressing the fact that B is obtained from A by adding n-th
primitive roots of unity, for all nonzero n ∈ S.
Main definitions #
IsCyclotomicExtension S A B: means thatBis obtained fromAby addingn-th primitive roots of unity, for all nonzeron ∈ S.CyclotomicField: givenn : ℕand a fieldK, we defineCyclotomicField n Kas the splitting field ofcyclotomic n K. Ifnis nonzero inK, it has the instanceIsCyclotomicExtension {n} K (CyclotomicField n K).CyclotomicRing: ifAis a domain with fraction fieldKandn : ℕ, we defineCyclotomicRing n A Kas theA-subalgebra ofCyclotomicField n Kgenerated by the roots ofX ^ n - 1. Ifnis nonzero inA, it has the instanceIsCyclotomicExtension {n} A (CyclotomicRing n A K).
Main results #
IsCyclotomicExtension.trans: ifIsCyclotomicExtension S A BandIsCyclotomicExtension T B C, thenIsCyclotomicExtension (S ∪ T) A CifFunction.Injective (algebraMap B C).IsCyclotomicExtension.union_right: givenIsCyclotomicExtension (S ∪ T) A B, thenIsCyclotomicExtension T (adjoin A { b : B | ∃ a : ℕ, a ∈ S ∧ a ≠ 0 ∧ b ^ (a : ℕ) = 1 }) B.IsCyclotomicExtension.union_left: givenIsCyclotomicExtension T A BandS ⊆ T, thenIsCyclotomicExtension S A (adjoin A { b : B | ∃ a : ℕ, a ∈ S ∧ a ≠ 0 ∧ b ^ (a : ℕ) = 1 }).IsCyclotomicExtension.finite: ifSis finite andIsCyclotomicExtension S A B, thenBis a finiteA-algebra.IsCyclotomicExtension.numberField: a finite cyclotomic extension of a number field is a number field.IsCyclotomicExtension.isSplittingField_X_pow_sub_one: ifIsCyclotomicExtension {n} K L, thenLis the splitting field ofX ^ n - 1.IsCyclotomicExtension.splitting_field_cyclotomic: ifIsCyclotomicExtension {n} K L, thenLis the splitting field ofcyclotomic n K.
Implementation details #
Our definition of IsCyclotomicExtension is very general, to allow rings of any characteristic
and infinite extensions, but it will mainly be used in the case S = {n} and for integral domains.
All results are in the IsCyclotomicExtension namespace.
Note that some results, for example IsCyclotomicExtension.trans,
IsCyclotomicExtension.finite, IsCyclotomicExtension.numberField,
IsCyclotomicExtension.finiteDimensional, IsCyclotomicExtension.isGalois and
CyclotomicField.algebraBase are lemmas, but they can be made local instances. Some of them are
included in the Cyclotomic locale.
Given an A-algebra B and S : Set ℕ, we define IsCyclotomicExtension S A B requiring
that there is an n-th primitive root of unity in B for all nonzero n ∈ S and that
B is generated over A by the roots of X ^ n - 1.
For all nonzero
n ∈ S, there exists a primitiven-th root of unity inB.The
n-th roots of unity, forn ∈ Snonzero, generateBas anA-algebra.
Instances
A reformulation of IsCyclotomicExtension that uses ⊤.
A reformulation of IsCyclotomicExtension in the case S is a singleton.
If IsCyclotomicExtension {1} A B, then the image of A in B equals B.
If (⊥ : SubAlgebra A B) = ⊤, then IsCyclotomicExtension {0} A B.
Transitivity of cyclotomic extensions.
If B is a cyclotomic extension of A given by roots of unity of order in S ∪ T, then B
is a cyclotomic extension of adjoin A { b : B | ∃ a : ℕ, a ∈ S ∧ a ≠ 0 ∧ b ^ a = 1 } given by
roots of unity of order in T.
If B is a cyclotomic extension of A given by roots of unity of order in T and S ⊆ T,
then adjoin A { b : B | ∃ a : ℕ, a ∈ S ∧ a ≠ 0 ∧ b ^ a = 1 } is a cyclotomic extension of B
given by roots of unity of order in S.
If there exists a nonzero s ∈ S such that n ∣ s, then IsCyclotomicExtension S A B
implies IsCyclotomicExtension (S ∪ {n}) A B.
If there exists a nonzero s ∈ S such that n ∣ s, then IsCyclotomicExtension S A B
if and only if IsCyclotomicExtension (S ∪ {n}) A B.
IsCyclotomicExtension S A B is equivalent to IsCyclotomicExtension (S ∪ {1}) A B.
If (⊥ : SubAlgebra A B) = ⊤, then IsCyclotomicExtension {1} A B.
If Function.Surjective (algebraMap A B), then IsCyclotomicExtension {1} A B.
Given (f : B ≃ₐ[A] C), if IsCyclotomicExtension S A B then
IsCyclotomicExtension S A C.
A cyclotomic extension is integral.
Two elements in the Galois group of a cyclotomic extension are equal if their actions on primitive roots are equal.
Cyclotomic extensions are abelian.
If S is finite and IsCyclotomicExtension S A B, then B is a finite A-algebra.
A cyclotomic finite extension of a number field is a number field.
If S is finite and IsCyclotomicExtension S K A, then finiteDimensional K A.
A cyclotomic extension splits X ^ n - 1 if n ∈ S.
A cyclotomic extension splits cyclotomic n K if n ∈ S.
Any two S-cyclotomic extensions are isomorphic.
Instances For
If IsCyclotomicExtension {n} K L, then L is the splitting field of X ^ n - 1.
If IsCyclotomicExtension {n} K L, then L is the splitting field of cyclotomic n K.
Given a nonzero n : ℕ and a field K, we define CyclotomicField n K as the
splitting field of cyclotomic n K. If n is nonzero in K, it has
the instance IsCyclotomicExtension {n} K (CyclotomicField n K).
Equations
- CyclotomicField n K = (Polynomial.cyclotomic n K).SplittingField
Instances For
Equations
Equations
Equations
If K is an A-algebra, the A-algebra structure on CyclotomicField n K.
Equations
If A is a domain with fraction field K and n : ℕ, we define CyclotomicRing n A K as
the A-subalgebra of CyclotomicField n K generated by the roots of X ^ n - 1. If n
is nonzero in A, it has the instance IsCyclotomicExtension {n} A (CyclotomicRing n A K).
Equations
- CyclotomicRing n A K = ↥(Algebra.adjoin A {b : CyclotomicField n K | b ^ n = 1})
Instances For
Equations
Equations
The A-algebra structure on CyclotomicRing n A K.
Equations
- CyclotomicRing.algebraBase n A K = (Algebra.adjoin A {b : CyclotomicField n K | b ^ n = 1}).algebra
Equations
- CyclotomicRing.instAlgebraCyclotomicField n A K = (Algebra.adjoin A {b : CyclotomicField n K | b ^ n = 1}).toAlgebra
Separably closed fields are S-cyclotomic extensions over themselves if
NeZero ((a : ℕ) : K) for all nonzero a ∈ S.
Alias of IsSepClosed.isCyclotomicExtension.
Separably closed fields are S-cyclotomic extensions over themselves if
NeZero ((a : ℕ) : K) for all nonzero a ∈ S.