Abel's summation formula #
We prove several versions of Abel's summation formula.
Results #
sum_mul_eq_sub_sub_integral_mul: general statement of the formula for a sum between two (nonnegative) realsaandb.sum_mul_eq_sub_integral_mul: a specialized version ofsum_mul_eq_sub_sub_integral_mulfor the casea = 0.sum_mul_eq_sub_integral_mul₀: a specialized version ofsum_mul_eq_sub_integral_mulfor when the first coefficient of the sequence is0. This is useful forArithmeticFunction.
Primed versions of the three results above are also stated for when the endpoints are Nat.
tendsto_sum_mul_atTop_nhds_one_sub_integral: limit version ofsum_mul_eq_sub_integral_mulwhenatends to∞.tendsto_sum_mul_atTop_nhds_one_sub_integral₀: limit version ofsum_mul_eq_sub_integral_mul₀whenatends to∞.summable_mul_of_bigO_atTop: letc : ℕ → 𝕜andf : ℝ → 𝕜with𝕜 = ℝorℂ, prove the summability ofn ↦ (c n) * (f n)using Abel's formula under somebigOassumptions at infinity.
References #
Abel's summation formula.
A version of sum_mul_eq_sub_sub_integral_mul where the endpoints are Nat.
Specialized version of sum_mul_eq_sub_sub_integral_mul for the case a = 0
A version of sum_mul_eq_sub_integral_mul where the endpoint is a Nat.
Specialized version of sum_mul_eq_sub_integral_mul when the first coefficient of the sequence
c is equal to 0.
A version of sum_mul_eq_sub_integral_mul₀ where the endpoint is a Nat.
A version of summable_mul_of_bigO_atTop that can be useful to avoid difficulties near zero.