Structure of finite(ly generated) abelian groups #
AddCommGroup.equiv_free_prod_directSum_zmod: Any finitely generated abelian group is the product of a power ofℤand a direct sum of someZMod (p i ^ e i)for some prime powersp i ^ e i.AddCommGroup.equiv_directSum_zmod_of_finite: Any finite abelian group is a direct sum of someZMod (p i ^ e i)for some prime powersp i ^ e i.CommGroup.equiv_prod_multiplicative_zmod_of_finiteis a version for multiplicative groups.
theorem
Module.finite_of_fg_torsion
(M : Type u)
[AddCommGroup M]
[Module ℤ M]
[Module.Finite ℤ M]
(hM : IsTorsion ℤ M)
:
Finite M
theorem
AddCommGroup.equiv_free_prod_directSum_zmod
(G : Type u)
[AddCommGroup G]
[hG : AddGroup.FG G]
:
Structure theorem of finitely generated abelian groups : Any finitely generated abelian
group is the product of a power of ℤ and a direct sum of some ZMod (p i ^ e i) for some
prime powers p i ^ e i.
Structure theorem of finite abelian groups : Any finite abelian group is a direct sum of
some ZMod (p i ^ e i) for some prime powers p i ^ e i.
Structure theorem of finite abelian groups : Any finite abelian group is a direct sum of
some ZMod (n i) for some natural numbers n i > 1.
theorem
AddCommGroup.finite_of_fg_torsion
(G : Type u)
[AddCommGroup G]
[hG' : AddGroup.FG G]
(hG : AddMonoid.IsTorsion G)
:
Finite G
theorem
CommGroup.finite_of_fg_torsion
(G : Type u)
[CommGroup G]
[Group.FG G]
(hG : Monoid.IsTorsion G)
:
Finite G
theorem
CommGroup.equiv_prod_multiplicative_zmod_of_finite
(G : Type u_1)
[CommGroup G]
[Finite G]
:
The Structure Theorem For Finite Abelian Groups in a multiplicative version:
A finite commutative group G is isomorphic to a finite product of finite cyclic groups.