Structure of finite(ly generated) abelian groups #
AddCommGroup.equiv_free_prod_directSum_zmod
: Any finitely generated abelian group is the product of a power ofℤ
and a direct sum of someZMod (p i ^ e i)
for some prime powersp i ^ e i
.AddCommGroup.equiv_directSum_zmod_of_finite
: Any finite abelian group is a direct sum of someZMod (p i ^ e i)
for some prime powersp i ^ e i
.
theorem
Module.finite_of_fg_torsion
(M : Type u)
[AddCommGroup M]
[Module ℤ M]
[Module.Finite ℤ M]
(hM : Module.IsTorsion ℤ M)
:
Finite M
theorem
AddCommGroup.equiv_free_prod_directSum_zmod
(G : Type u)
[AddCommGroup G]
[hG : AddGroup.FG G]
:
Structure theorem of finitely generated abelian groups : Any finitely generated abelian
group is the product of a power of ℤ
and a direct sum of some ZMod (p i ^ e i)
for some
prime powers p i ^ e i
.
Structure theorem of finite abelian groups : Any finite abelian group is a direct sum of
some ZMod (p i ^ e i)
for some prime powers p i ^ e i
.
Structure theorem of finite abelian groups : Any finite abelian group is a direct sum of
some ZMod (q i)
for some prime powers q i > 1
.
theorem
AddCommGroup.finite_of_fg_torsion
(G : Type u)
[AddCommGroup G]
[hG' : AddGroup.FG G]
(hG : AddMonoid.IsTorsion G)
:
Finite G
theorem
CommGroup.finite_of_fg_torsion
(G : Type u)
[CommGroup G]
[Group.FG G]
(hG : Monoid.IsTorsion G)
:
Finite G
The Classification Theorem For Finite Abelian Groups in a multiplicative version:
A finite commutative group G
is isomorphic to a finite product of finite cyclic groups.