Commutators of Subgroups #
If G is a group and H₁ H₂ : Subgroup G then the commutator ⁅H₁, H₂⁆ : Subgroup G
is the subgroup of G generated by the commutators h₁ * h₂ * h₁⁻¹ * h₂⁻¹.
Main definitions #
⁅g₁, g₂⁆: the commutator of the elementsg₁andg₂(defined bycommutatorElementelsewhere).⁅H₁, H₂⁆: the commutator of the subgroupsH₁andH₂.commutator: defines the commutator of a groupGas a subgroup ofG.
instance
Subgroup.commutator_characteristic
{G : Type u_1}
[Group G]
(H₁ H₂ : Subgroup G)
[h₁ : H₁.Characteristic]
[h₂ : H₂.Characteristic]
:
⁅H₁, H₂⁆.Characteristic
theorem
Subgroup.commutator_pi_pi_le
{η : Type u_4}
{Gs : η → Type u_5}
[(i : η) → Group (Gs i)]
(H K : (i : η) → Subgroup (Gs i))
:
The commutator of direct product is contained in the direct product of the commutators.
See commutator_pi_pi_of_finite for equality given Fintype η.
Equations
- ⋯ = ⋯
If g is conjugate to g ^ 2, then g is a commutator
Representatives (g₁, g₂) : G × G of commutators ⁅g₁, g₂⁆ ∈ G.
Equations
- commutatorRepresentatives G = Set.range fun (g : ↑(commutatorSet G)) => (Exists.choose ⋯, ⋯.choose)
Instances For
Subgroup generated by representatives g₁ g₂ : G of commutators ⁅g₁, g₂⁆ ∈ G.
Equations
Instances For
theorem
Subgroup.Normal.quotient_commutative_iff_commutator_le
{G : Type u_1}
[Group G]
{N : Subgroup G}
[N.Normal]
:
theorem
Subgroup.Normal.commutator_le_of_self_sup_commutative_eq_top
{G : Type u_1}
[Group G]
{N : Subgroup G}
[N.Normal]
{H : Subgroup G}
(hHN : N ⊔ H = ⊤)
(hH : IsMulCommutative ↥H)
:
If N is a normal subgroup of G and H a commutative subgroup such that H ⊔ N = ⊤,
then N contains commutator G.