Orders on a sum type #
This file defines the disjoint sum and the linear (aka lexicographic) sum of two orders and
provides relation instances for Sum.LiftRel and Sum.Lex.
We declare the disjoint sum of orders as the default set of instances. The linear order goes on a type synonym.
Main declarations #
Sum.LE,Sum.LT: Disjoint sum of orders.Sum.Lex.LE,Sum.Lex.LT: Lexicographic/linear sum of orders.
Notation #
α ⊕ₗ β: The linear sum ofαandβ.
Unbundled relation classes #
instance
Sum.instIsAntisymmLiftRel
{α : Type u_1}
{β : Type u_2}
(r : α → α → Prop)
(s : β → β → Prop)
[IsAntisymm α r]
[IsAntisymm β s]
:
IsAntisymm (α ⊕ β) (LiftRel r s)
instance
Sum.instIsAntisymmLex
{α : Type u_1}
{β : Type u_2}
(r : α → α → Prop)
(s : β → β → Prop)
[IsAntisymm α r]
[IsAntisymm β s]
:
IsAntisymm (α ⊕ β) (Lex r s)
instance
Sum.instIsTrichotomousLex
{α : Type u_1}
{β : Type u_2}
(r : α → α → Prop)
(s : β → β → Prop)
[IsTrichotomous α r]
[IsTrichotomous β s]
:
IsTrichotomous (α ⊕ β) (Lex r s)
instance
Sum.instIsWellOrderLex
{α : Type u_1}
{β : Type u_2}
(r : α → α → Prop)
(s : β → β → Prop)
[IsWellOrder α r]
[IsWellOrder β s]
:
IsWellOrder (α ⊕ β) (Lex r s)
Disjoint sum of two orders #
Equations
- Sum.instLESum = { le := Sum.LiftRel (fun (x1 x2 : α) => x1 ≤ x2) fun (x1 x2 : β) => x1 ≤ x2 }
Equations
- Sum.instLTSum = { lt := Sum.LiftRel (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : β) => x1 < x2 }
Equations
- Sum.instPreorderSum = { toLE := Sum.instLESum, toLT := Sum.instLTSum, le_refl := ⋯, le_trans := ⋯, lt_iff_le_not_ge := ⋯ }
instance
Sum.instPartialOrder
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
:
PartialOrder (α ⊕ β)
Equations
- Sum.instPartialOrder = { toPreorder := Sum.instPreorderSum, le_antisymm := ⋯ }
instance
Sum.noMinOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMinOrder α]
[NoMinOrder β]
:
NoMinOrder (α ⊕ β)
instance
Sum.noMaxOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMaxOrder α]
[NoMaxOrder β]
:
NoMaxOrder (α ⊕ β)
@[simp]
@[simp]
instance
Sum.denselyOrdered
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[DenselyOrdered α]
[DenselyOrdered β]
:
DenselyOrdered (α ⊕ β)
@[simp]
Linear sum of two orders #
The linear sum of two orders
Equations
- Sum.Lex.«term_⊕ₗ_» = Lean.ParserDescr.trailingNode `Sum.Lex.«term_⊕ₗ_» 30 0 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊕ₗ ") (Lean.ParserDescr.cat `term 29))
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
instance
Sum.Lex.preorder
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
:
Preorder (_root_.Lex (α ⊕ β))
Equations
- Sum.Lex.preorder = { toLE := Sum.Lex.LE, toLT := Sum.Lex.LT, le_refl := ⋯, le_trans := ⋯, lt_iff_le_not_ge := ⋯ }
theorem
Sum.Lex.inl_strictMono
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
:
StrictMono (⇑toLex ∘ inl)
theorem
Sum.Lex.inr_strictMono
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
:
StrictMono (⇑toLex ∘ inr)
instance
Sum.Lex.partialOrder
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
:
PartialOrder (_root_.Lex (α ⊕ β))
Equations
- Sum.Lex.partialOrder = { toPreorder := Sum.Lex.preorder, le_antisymm := ⋯ }
instance
Sum.Lex.linearOrder
{α : Type u_1}
{β : Type u_2}
[LinearOrder α]
[LinearOrder β]
:
LinearOrder (_root_.Lex (α ⊕ β))
Equations
- One or more equations did not get rendered due to their size.
instance
Sum.Lex.boundedOrder
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
[OrderBot α]
[OrderTop β]
:
BoundedOrder (_root_.Lex (α ⊕ β))
Equations
- Sum.Lex.boundedOrder = { toOrderTop := Sum.Lex.orderTop, toOrderBot := Sum.Lex.orderBot }
instance
Sum.Lex.noMinOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMinOrder α]
[NoMinOrder β]
:
NoMinOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.noMaxOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMaxOrder α]
[NoMaxOrder β]
:
NoMaxOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.noMinOrder_of_nonempty
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMinOrder α]
[Nonempty α]
:
NoMinOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.noMaxOrder_of_nonempty
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMaxOrder β]
[Nonempty β]
:
NoMaxOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.denselyOrdered_of_noMaxOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[DenselyOrdered α]
[DenselyOrdered β]
[NoMaxOrder α]
:
DenselyOrdered (_root_.Lex (α ⊕ β))
instance
Sum.Lex.denselyOrdered_of_noMinOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[DenselyOrdered α]
[DenselyOrdered β]
[NoMinOrder β]
:
DenselyOrdered (_root_.Lex (α ⊕ β))
Order isomorphisms #
Equiv.sumComm promoted to an order isomorphism.
Equations
- OrderIso.sumComm α β = { toEquiv := Equiv.sumComm α β, map_rel_iff' := ⋯ }
Instances For
Equiv.sumAssoc promoted to an order isomorphism.
Equations
- OrderIso.sumAssoc α β γ = { toEquiv := Equiv.sumAssoc α β γ, map_rel_iff' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
Equiv.sumAssoc promoted to an order isomorphism.
Equations
- OrderIso.sumLexAssoc α β γ = { toEquiv := Equiv.sumAssoc α β γ, map_rel_iff' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
theorem
OrderIso.sumLexDualAntidistrib_symm_inl
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
(b : β)
:
@[simp]
theorem
OrderIso.sumLexDualAntidistrib_symm_inr
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
(a : α)
:
WithBot α is order-isomorphic to PUnit ⊕ₗ α, by sending ⊥ to Unit and ↑a to
a.
Equations
- WithBot.orderIsoPUnitSumLex = { toEquiv := (Equiv.optionEquivSumPUnit α).trans ((Equiv.sumComm α PUnit.{?u.14 + 1}).trans toLex), map_rel_iff' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
WithTop α is order-isomorphic to α ⊕ₗ PUnit, by sending ⊤ to Unit and ↑a to
a.
Equations
- WithTop.orderIsoSumLexPUnit = { toEquiv := (Equiv.optionEquivSumPUnit α).trans toLex, map_rel_iff' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]