Symmetric powers of a finset #
This file defines the symmetric powers of a finset as Finset (Sym α n) and Finset (Sym2 α).
Main declarations #
Finset.sym: The symmetric power of a finset.s.sym nis all the multisets of cardinalitynwhose elements are ins.Finset.sym2: The symmetric square of a finset.s.sym2is all the pairs whose elements are ins.- A
Fintype (Sym2 α)instance that does not requireDecidableEq α.
TODO #
Finset.sym forms a Galois connection between Finset α and Finset (Sym α n). Similar for
Finset.sym2.
Equations
- Sym2.instFintype = { elems := Finset.univ.sym2, complete := ⋯ }
Alias of the reverse direction of Finset.sym2_nonempty.
theorem
Finset.isDiag_mk_of_mem_diag
{α : Type u_1}
{s : Finset α}
[DecidableEq α]
{a : α × α}
(h : a ∈ s.diag)
:
theorem
Finset.replicate_mem_sym
{α : Type u_1}
{s : Finset α}
{a : α}
[DecidableEq α]
(ha : a ∈ s)
(n : ℕ)
:
theorem
Finset.Nonempty.sym
{α : Type u_1}
{s : Finset α}
[DecidableEq α]
(h : s.Nonempty)
(n : ℕ)
:
@[simp]
@[simp]
@[simp]
theorem
Finset.sym_filterNe_mem
{α : Type u_1}
{s : Finset α}
[DecidableEq α]
{n : ℕ}
{m : Sym α n}
(a : α)
(h : m ∈ s.sym n)
:
def
Finset.symInsertEquiv
{α : Type u_1}
{s : Finset α}
{a : α}
[DecidableEq α]
{n : ℕ}
(h : a ∉ s)
:
If a does not belong to the finset s, then the nth symmetric power of {a} ∪ s is
in 1-1 correspondence with the disjoint union of the n - ith symmetric powers of s,
for 0 ≤ i ≤ n.
Equations
- One or more equations did not get rendered due to their size.