Factoring through subobjects #
The predicate h : P.Factors f, for P : Subobject Y and f : X ⟶ Y
asserts the existence of some P.factorThru f : X ⟶ (P : C) making the obvious diagram commute.
When f : X ⟶ Y and P : MonoOver Y,
P.Factors f expresses that there exists a factorisation of f through P.
Given h : P.Factors f, you can recover the morphism as P.factorThru f h.
Instances For
P.factorThru f h provides a factorisation of f : X ⟶ Y through some P : MonoOver Y,
given the evidence h : P.Factors f that such a factorisation exists.
Equations
- P.factorThru f h = Classical.choose h
Instances For
When f : X ⟶ Y and P : Subobject Y,
P.Factors f expresses that there exists a factorisation of f through P.
Given h : P.Factors f, you can recover the morphism as P.factorThru f h.
Equations
- P.Factors f = Quotient.liftOn' P (fun (P : CategoryTheory.MonoOver Y) => P.Factors f) ⋯
Instances For
P.factorThru f h provides a factorisation of f : X ⟶ Y through some P : Subobject Y,
given the evidence h : P.Factors f that such a factorisation exists.
Equations
- P.factorThru f h = Classical.choose ⋯