Conjugate morphisms by isomorphisms #
An isomorphism α : X ≅ Y defines
- a monoid isomorphism
CategoryTheory.Iso.conj : End X ≃* End Ybyα.conj f = α.inv ≫ f ≫ α.hom; - a group isomorphism
CategoryTheory.Iso.conjAut : Aut X ≃* Aut Ybyα.conjAut f = α.symm ≪≫ f ≪≫ αusingCategoryTheory.Iso.homCongr : (X ≅ X₁) → (Y ≅ Y₁) → (X ⟶ Y) ≃ (X₁ ⟶ Y₁)andCategoryTheory.Iso.isoCongr : (f : X₁ ≅ X₂) → (g : Y₁ ≅ Y₂) → (X₁ ≅ Y₁) ≃ (X₂ ≅ Y₂)which are defined inCategoryTheory.HomCongr.
theorem
CategoryTheory.Iso.conj_apply
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : End X)
:
@[simp]
theorem
CategoryTheory.Iso.conj_comp
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f g : End X)
:
@[simp]
@[simp]
@[simp]
theorem
CategoryTheory.Iso.symm_self_conj
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : End X)
:
@[simp]
theorem
CategoryTheory.Iso.self_symm_conj
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(α : X ≅ Y)
(f : End Y)
:
conj defines a group isomorphisms between groups of automorphisms
Equations
Instances For
theorem
CategoryTheory.Functor.map_conj
{C : Type u}
[Category.{v, u} C]
{D : Type u₁}
[Category.{v₁, u₁} D]
(F : Functor C D)
{X Y : C}
(α : X ≅ Y)
(f : End X)
:
theorem
CategoryTheory.Functor.map_conjAut
{C : Type u}
[Category.{v, u} C]
{D : Type u₁}
[Category.{v₁, u₁} D]
(F : Functor C D)
{X Y : C}
(α : X ≅ Y)
(f : Aut X)
: