Adjunctions and limits #
A left adjoint preserves colimits (CategoryTheory.Adjunction.leftAdjoint_preservesColimits),
and a right adjoint preserves limits (CategoryTheory.Adjunction.rightAdjoint_preservesLimits).
Equivalences create and reflect (co)limits.
(CategoryTheory.Functor.createsLimitsOfIsEquivalence,
CategoryTheory.Functor.createsColimitsOfIsEquivalence,
CategoryTheory.Functor.reflectsLimits_of_isEquivalence,
CategoryTheory.Functor.reflectsColimits_of_isEquivalence.)
In CategoryTheory.Adjunction.coconesIso we show that
when F ⊣ G,
the functor associating to each Y the cocones over K ⋙ F with cone point Y
is naturally isomorphic to
the functor associating to each Y the cocones over K with cone point G.obj Y.
The right adjoint of Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).
Auxiliary definition for functorialityIsLeftAdjoint.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The unit for the adjunction for Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).
Auxiliary definition for functorialityIsLeftAdjoint.
Equations
- adj.functorialityUnit K = { app := fun (c : CategoryTheory.Limits.Cocone K) => { hom := adj.unit.app c.pt, w := ⋯ }, naturality := ⋯ }
Instances For
The counit for the adjunction for Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).
Auxiliary definition for functorialityIsLeftAdjoint.
Equations
Instances For
The functor Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F) is a left adjoint.
Equations
- adj.functorialityAdjunction K = { unit := adj.functorialityUnit K, counit := adj.functorialityCounit K, left_triangle_components := ⋯, right_triangle_components := ⋯ }
Instances For
A left adjoint preserves colimits.
Equations
- One or more equations did not get rendered due to their size.
Transport a HasColimitsOfShape instance across an equivalence.
Transport a HasColimitsOfSize instance across an equivalence.
The left adjoint of Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).
Auxiliary definition for functorialityIsRightAdjoint.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The unit for the adjunction for Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).
Auxiliary definition for functorialityIsRightAdjoint.
Equations
Instances For
The counit for the adjunction for Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).
Auxiliary definition for functorialityIsRightAdjoint.
Equations
- adj.functorialityCounit' K = { app := fun (c : CategoryTheory.Limits.Cone K) => { hom := adj.counit.app c.pt, w := ⋯ }, naturality := ⋯ }
Instances For
The functor Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G) is a right adjoint.
Equations
- adj.functorialityAdjunction' K = { unit := adj.functorialityUnit' K, counit := adj.functorialityCounit' K, left_triangle_components := ⋯, right_triangle_components := ⋯ }
Instances For
A right adjoint preserves limits.
Equations
- One or more equations did not get rendered due to their size.
Transport a HasLimitsOfShape instance across an equivalence.
Transport a HasLimitsOfSize instance across an equivalence.
auxiliary construction for coconesIso
Equations
Instances For
auxiliary construction for coconesIso
Equations
Instances For
auxiliary construction for conesIso
Equations
- adj.conesIsoComponentHom X t = { app := fun (j : J) => (adj.homEquiv (Opposite.unop X) (K.obj j)) (t.app j), naturality := ⋯ }
Instances For
auxiliary construction for conesIso
Equations
- adj.conesIsoComponentInv X t = { app := fun (j : J) => (adj.homEquiv (Opposite.unop X) (K.obj j)).symm (t.app j), naturality := ⋯ }
Instances For
When F ⊣ G,
the functor associating to each Y the cocones over K ⋙ F with cone point Y
is naturally isomorphic to
the functor associating to each Y the cocones over K with cone point G.obj Y.
Equations
- adj.coconesIso = CategoryTheory.NatIso.ofComponents (fun (Y : D) => { hom := adj.coconesIsoComponentHom Y, inv := adj.coconesIsoComponentInv Y, hom_inv_id := ⋯, inv_hom_id := ⋯ }) ⋯
Instances For
When F ⊣ G,
the functor associating to each X the cones over K with cone point F.op.obj X
is naturally isomorphic to
the functor associating to each X the cones over K ⋙ G with cone point X.
Equations
- adj.conesIso = CategoryTheory.NatIso.ofComponents (fun (X : Cᵒᵖ) => { hom := adj.conesIsoComponentHom X, inv := adj.conesIsoComponentInv X, hom_inv_id := ⋯, inv_hom_id := ⋯ }) ⋯