Evaluation of specific improper integrals #
This file contains some integrability results, and evaluations of integrals, over ℝ or over
half-infinite intervals in ℝ.
These lemmas are stated in terms of either Iic or Ioi (neglecting Iio and Ici) to match
mathlib's conventions for integrals over finite intervals (see intervalIntegral).
See also #
Mathlib/Analysis/SpecialFunctions/Integrals.lean-- integrals over finite intervalsMathlib/Analysis/SpecialFunctions/Gaussian.lean-- integral ofexp (-x ^ 2)Mathlib/Analysis/SpecialFunctions/JapaneseBracket.lean-- integrability of(1+‖x‖)^(-r).
theorem
integrableOn_exp_neg_Ioi
(c : ℝ)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Real.exp (-x)) (Set.Ioi c) MeasureTheory.volume
theorem
integrableOn_exp_mul_complex_Ioi
{a : ℂ}
(ha : a.re < 0)
(c : ℝ)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Complex.exp (a * ↑x)) (Set.Ioi c) MeasureTheory.volume
theorem
integrableOn_exp_mul_complex_Iic
{a : ℂ}
(ha : 0 < a.re)
(c : ℝ)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Complex.exp (a * ↑x)) (Set.Iic c) MeasureTheory.volume
theorem
integrableOn_exp_mul_Ioi
{a : ℝ}
(ha : a < 0)
(c : ℝ)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Real.exp (a * x)) (Set.Ioi c) MeasureTheory.volume
theorem
integrableOn_exp_mul_Iic
{a : ℝ}
(ha : 0 < a)
(c : ℝ)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Real.exp (a * x)) (Set.Iic c) MeasureTheory.volume
theorem
integrableOn_add_rpow_Ioi_of_lt
{a c m : ℝ}
(ha : a < -1)
(hc : -m < c)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => (x + m) ^ a) (Set.Ioi c) MeasureTheory.volume
If -m < c, then (fun t : ℝ ↦ (t + m) ^ a) is integrable on (c, ∞) for all a < -1.
theorem
integrableOn_Ioi_rpow_of_lt
{a c : ℝ}
(ha : a < -1)
(hc : 0 < c)
:
MeasureTheory.IntegrableOn (fun (t : ℝ) => t ^ a) (Set.Ioi c) MeasureTheory.volume
If 0 < c, then (fun t : ℝ ↦ t ^ a) is integrable on (c, ∞) for all a < -1.
theorem
not_integrableOn_Ioi_rpow
(s : ℝ)
:
¬MeasureTheory.IntegrableOn (fun (x : ℝ) => x ^ s) (Set.Ioi 0) MeasureTheory.volume
The real power function with any exponent is not integrable on (0, +∞).
theorem
integrableOn_Ioi_norm_cpow_of_lt
{a : ℂ}
(ha : a.re < -1)
{c : ℝ}
(hc : 0 < c)
:
MeasureTheory.IntegrableOn (fun (t : ℝ) => ‖↑t ^ a‖) (Set.Ioi c) MeasureTheory.volume
theorem
integrableOn_Ioi_cpow_of_lt
{a : ℂ}
(ha : a.re < -1)
{c : ℝ}
(hc : 0 < c)
:
MeasureTheory.IntegrableOn (fun (t : ℝ) => ↑t ^ a) (Set.Ioi c) MeasureTheory.volume
theorem
integrableOn_Ioi_deriv_ofReal_cpow
{s : ℂ}
{t : ℝ}
(ht : 0 < t)
(hs : s.re < 0)
:
MeasureTheory.IntegrableOn (deriv fun (x : ℝ) => ↑x ^ s) (Set.Ioi t) MeasureTheory.volume
theorem
integrableOn_Ioi_deriv_norm_ofReal_cpow
{s : ℂ}
{t : ℝ}
(ht : 0 < t)
(hs : s.re ≤ 0)
:
MeasureTheory.IntegrableOn (deriv fun (x : ℝ) => ‖↑x ^ s‖) (Set.Ioi t) MeasureTheory.volume
theorem
not_integrableOn_Ioi_cpow
(s : ℂ)
:
¬MeasureTheory.IntegrableOn (fun (x : ℝ) => ↑x ^ s) (Set.Ioi 0) MeasureTheory.volume
The complex power function with any exponent is not integrable on (0, +∞).
theorem
integrable_inv_one_add_sq :
MeasureTheory.Integrable (fun (x : ℝ) => (1 + x ^ 2)⁻¹) MeasureTheory.volume