Documentation

Mathlib.Analysis.Normed.Module.Dual

The strong dual of a normed space #

In this file we consider the strong dual StrongDual of a normed space, and the continuous linear map NormedSpace.inclusionInDoubleDual from a normed space into its double StrongDual.

For base field ๐•œ = โ„ or ๐•œ = โ„‚, this map is actually an isometric embedding; we provide a version NormedSpace.inclusionInDoubleDualLi of the map which is of type a bundled linear isometric embedding, E โ†’โ‚—แตข[๐•œ] (StrongDual ๐•œ (StrongDual ๐•œ E)).

Since a lot of elementary properties don't require eq_of_dist_eq_zero we start setting up the theory for SeminormedAddCommGroup and we specialize to NormedAddCommGroup when needed.

Main definitions #

References #

Tags #

strong dual, polar

def NormedSpace.inclusionInDoubleDual (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] (E : Type u_2) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] :
E โ†’L[๐•œ] StrongDual ๐•œ (StrongDual ๐•œ E)

The inclusion of a normed space in its double (topological) strong dual, considered as a bounded linear map.

Equations
Instances For
    @[simp]
    theorem NormedSpace.dual_def (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] (E : Type u_2) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] (x : E) (f : StrongDual ๐•œ E) :
    ((inclusionInDoubleDual ๐•œ E) x) f = f x
    theorem NormedSpace.norm_le_dual_bound (๐•œ : Type v) [RCLike ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ (f : StrongDual ๐•œ E), โ€–f xโ€– โ‰ค M * โ€–fโ€–) :

    If one controls the norm of every f x, then one controls the norm of x. Compare ContinuousLinearMap.opNorm_le_bound.

    theorem NormedSpace.eq_zero_of_forall_dual_eq_zero (๐•œ : Type v) [RCLike ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {x : E} (h : โˆ€ (f : StrongDual ๐•œ E), f x = 0) :
    x = 0
    theorem NormedSpace.eq_zero_iff_forall_dual_eq_zero (๐•œ : Type v) [RCLike ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (x : E) :
    x = 0 โ†” โˆ€ (g : StrongDual ๐•œ E), g x = 0
    theorem NormedSpace.eq_iff_forall_dual_eq (๐•œ : Type v) [RCLike ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {x y : E} :
    x = y โ†” โˆ€ (g : StrongDual ๐•œ E), g x = g y

    See also geometric_hahn_banach_point_point.

    def NormedSpace.inclusionInDoubleDualLi (๐•œ : Type v) [RCLike ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] :
    E โ†’โ‚—แตข[๐•œ] StrongDual ๐•œ (StrongDual ๐•œ E)

    The inclusion of a normed space in its double strong dual is an isometry onto its image.

    Equations
    Instances For
      theorem NormedSpace.isClosed_polar (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] (s : Set E) :
      @[simp]
      theorem NormedSpace.polar_closure (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] (s : Set E) :
      StrongDual.polar ๐•œ (closure s) = StrongDual.polar ๐•œ s
      theorem NormedSpace.smul_mem_polar {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] {s : Set E} {x' : StrongDual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€–) :

      If x' is a StrongDual ๐•œ E element such that the norms โ€–x' zโ€– are bounded for z โˆˆ s, then a small scalar multiple of x' is in polar ๐•œ s.

      theorem NormedSpace.polar_ball_subset_closedBall_div {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) :
      theorem NormedSpace.polar_closedBall {๐•œ : Type u_3} {E : Type u_4} [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) :

      The polar of closed ball in a normed space E is the closed ball of the dual with inverse radius.

      theorem NormedSpace.polar_ball {๐•œ : Type u_3} {E : Type u_4} [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) :
      theorem NormedSpace.isBounded_polar_of_mem_nhds_zero (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] {s : Set E} (s_nhds : s โˆˆ nhds 0) :

      Given a neighborhood s of the origin in a normed space E, the dual norms of all elements of the polar polar ๐•œ s are bounded by a constant.

      theorem LinearMap.polar_AbsConvex {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField ๐•œ] [NormedSpace โ„ ๐•œ] [AddCommMonoid E] [AddCommMonoid F] [Module ๐•œ E] [Module ๐•œ F] {B : E โ†’โ‚—[๐•œ] F โ†’โ‚—[๐•œ] ๐•œ} (s : Set E) [Module โ„ F] [IsScalarTower โ„ ๐•œ F] [IsScalarTower โ„ ๐•œ ๐•œ] :
      AbsConvex ๐•œ (B.polar s)