The null subgroup in a seminormed commutative group #
For any SeminormedAddCommGroup M, the quotient SeparationQuotient M by the null subgroup is
defined as a NormedAddCommGroup instance in Mathlib/Analysis/Normed/Group/Uniform.lean. Here we
define the null space as a subgroup.
Main definitions #
We use M to denote seminormed groups.
nullAddSubgroup: the subgroup of elementsxwith‖x‖ = 0.
If E is a vector space over 𝕜 with an appropriate continuous action, we also define the null
subspace as a submodule of E.
nullSubmodule: the subspace of elementsxwith‖x‖ = 0.
The additive null subgroup with respect to the norm.
Equations
Instances For
theorem
isClosed_nullAddSubgroup
{M : Type u_1}
[SeminormedAddCommGroup M]
:
IsClosed ↑(nullAddSubgroup M)
@[simp]
@[simp]
def
nullSubmodule
(𝕜 : Type u_2)
(E : Type u_3)
[SeminormedAddCommGroup E]
[SeminormedRing 𝕜]
[Module 𝕜 E]
[IsBoundedSMul 𝕜 E]
:
Submodule 𝕜 E
The null space with respect to the norm.
Equations
- nullSubmodule 𝕜 E = { toAddSubmonoid := (nullAddSubgroup E).toAddSubmonoid, smul_mem' := ⋯ }
Instances For
theorem
isClosed_nullSubmodule
{𝕜 : Type u_2}
{E : Type u_3}
[SeminormedAddCommGroup E]
[SeminormedRing 𝕜]
[Module 𝕜 E]
[IsBoundedSMul 𝕜 E]
:
IsClosed ↑(nullSubmodule 𝕜 E)
@[simp]
theorem
mem_nullSubmodule_iff
{𝕜 : Type u_2}
{E : Type u_3}
[SeminormedAddCommGroup E]
[SeminormedRing 𝕜]
[Module 𝕜 E]
[IsBoundedSMul 𝕜 E]
{x : E}
: