Documentation

Mathlib.Analysis.Distribution.TemperedDistribution

TemperedDistribution #

Main definitions #

Notation #

@[reducible, inline]
abbrev TemperedDistribution (E : Type u_3) (F : Type u_4) [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace E] [NormedSpace F] :
Type (max u_3 u_4)

The space of tempered distribution is the space of continuous linear maps from the Schwartz to a normed space, equipped with the topology of pointwise convergence.

Equations
Instances For

    The space of tempered distribution is the space of continuous linear maps from the Schwartz to a normed space, equipped with the topology of pointwise convergence.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Embeddings into tempered distributions #

      A function of temperate growth f defines a tempered distribution via integration, namely g ↦ ∫ (x : E), g x • f x ∂μ.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The canonical embedding of 𝓢(E, F) into 𝓢'(E, F) as a continuous linear map.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Define a tempered distribution from a L^p function.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem MeasureTheory.Lp.toTemperedDistribution_apply {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace E] [NormedSpace F] [CompleteSpace F] [MeasurableSpace E] [BorelSpace E] {μ : Measure E} [ : μ.HasTemperateGrowth] {p : ENNReal} [hp : Fact (1 p)] (f : (Lp F p μ)) (g : SchwartzMap E ) :
            (toTemperedDistribution f) g = (x : E), g x f x μ

            The natural embedding of L^p into tempered distributions.

            Equations
            Instances For

              Scalar multiplication with temperate growth functions #

              Multiplication with a temperate growth function as a continuous linear map on 𝓢'(E, F).

              Equations
              Instances For
                @[simp]
                theorem TemperedDistribution.smulLeftCLM_const {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace E] [NormedSpace F] (c : ) (f : TemperedDistribution E F) :
                (smulLeftCLM F fun (x : E) => c) f = c f
                @[simp]
                theorem TemperedDistribution.smulLeftCLM_smulLeftCLM_apply {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace E] [NormedSpace F] {g₁ g₂ : E} (hg₁ : Function.HasTemperateGrowth g₁) (hg₂ : Function.HasTemperateGrowth g₂) (f : TemperedDistribution E F) :
                (smulLeftCLM F g₂) ((smulLeftCLM F g₁) f) = (smulLeftCLM F (g₁ * g₂)) f

                Coercion of the product of two Lp functions to a tempered distribution is equal to the left multiplication if the left factor is a function of temperate growth.

                Derivatives #

                The 1-dimensional derivative on tempered distribution as a continuous -linear map.

                Equations
                Instances For

                  The partial derivative (or directional derivative) in the direction m : E as a continuous linear map on tempered distributions.

                  Equations
                  • One or more equations did not get rendered due to their size.

                  Laplacian #

                  Fourier transform #

                  @[deprecated FourierTransform.fourierCLM (since := "2026-01-06")]

                  Alias of FourierTransform.fourierCLM.

                  Equations
                  Instances For
                    @[deprecated FourierTransform.fourierCLM_apply (since := "2026-01-06")]

                    Alias of FourierTransform.fourierCLM_apply.

                    @[deprecated FourierTransform.fourierInvCLM (since := "2026-01-06")]

                    Alias of FourierTransform.fourierInvCLM.

                    Equations
                    Instances For
                      @[deprecated FourierTransform.fourierInvCLM_apply (since := "2026-01-06")]

                      Alias of FourierTransform.fourierInvCLM_apply.

                      @[deprecated TemperedDistribution.fourier_toTemperedDistributionCLM_eq (since := "2026-01-14")]

                      Alias of TemperedDistribution.fourier_toTemperedDistributionCLM_eq.


                      The distributional Fourier transform and the classical Fourier transform coincide on 𝓢(E, F).

                      @[deprecated TemperedDistribution.fourierInv_toTemperedDistributionCLM_eq (since := "2026-01-14")]

                      Alias of TemperedDistribution.fourierInv_toTemperedDistributionCLM_eq.


                      The distributional inverse Fourier transform and the classical inverse Fourier transform coincide on 𝓢(E, F).

                      The Dirac delta distribution

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[deprecated TemperedDistribution.delta (since := "2025-12-23")]

                        Alias of TemperedDistribution.delta.


                        The Dirac delta distribution

                        Equations
                        Instances For
                          @[simp]
                          theorem TemperedDistribution.delta_apply {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] (x : E) (f : SchwartzMap E ) :
                          (delta x) f = f x
                          @[deprecated TemperedDistribution.delta_apply (since := "2025-12-23")]

                          Alias of TemperedDistribution.delta_apply.

                          @[simp]

                          Dirac measure considered as a tempered distribution is the delta distribution.

                          @[deprecated TemperedDistribution.toTemperedDistribution_dirac_eq_delta (since := "2025-12-23")]

                          Alias of TemperedDistribution.toTemperedDistribution_dirac_eq_delta.


                          Dirac measure considered as a tempered distribution is the delta distribution.

                          The Fourier transform of the delta distribution is equal to the volume.

                          Informally, this is usually represented as 𝓕 δ = 1.