Collection of convex functions #
In this file we prove that certain specific functions are strictly convex, including the following:
Even.strictConvexOn_pow: For an evenn : ℕwith2 ≤ n,fun x => x ^ nis strictly convex.strictConvexOn_pow: Forn : ℕ, with2 ≤ n,fun x => x ^ nis strictly convex on $[0,+∞)$.strictConvexOn_zpow: Form : ℤwithm ≠ 0, 1,fun x => x ^ mis strictly convex on $[0, +∞)$.strictConcaveOn_sin_Icc:sinis strictly concave on $[0, π]$strictConcaveOn_cos_Icc:cosis strictly concave on $[-π/2, π/2]$
TODO #
These convexity lemmas are proved by checking the sign of the second derivative. If desired, most
of these could also be switched to elementary proofs, like in
Analysis.Convex.SpecificFunctions.Basic.
x^n, n : ℕ is strictly convex on [0, +∞) for all n greater than 2.
theorem
Even.strictConvexOn_pow
{n : ℕ}
(hn : Even n)
(h : n ≠ 0)
:
StrictConvexOn ℝ Set.univ fun (x : ℝ) => x ^ n
x^n, n : ℕ is strictly convex on the whole real line whenever n ≠ 0 is even.
theorem
Finset.prod_nonneg_of_card_nonpos_even
{α : Type u_1}
{β : Type u_2}
[CommRing β]
[LinearOrder β]
[IsStrictOrderedRing β]
{f : α → β}
[DecidablePred fun (x : α) => f x ≤ 0]
{s : Finset α}
(h0 : Even {x ∈ s | f x ≤ 0}.card)
:
theorem
strictConvexOn_zpow
{m : ℤ}
(hm₀ : m ≠ 0)
(hm₁ : m ≠ 1)
:
StrictConvexOn ℝ (Set.Ioi 0) fun (x : ℝ) => x ^ m
x^m, m : ℤ is convex on (0, +∞) for all m except 0 and 1.