Closure, interior, and frontier of preimages under re and im #
In this fact we use the fact that ℂ is naturally homeomorphic to ℝ × ℝ to deduce some
topological properties of Complex.re and Complex.im.
Main statements #
Each statement about Complex.re listed below has a counterpart about Complex.im.
Complex.isHomeomorphicTrivialFiberBundle_re:Complex.returnsℂinto a trivial topological fiber bundle overℝ;Complex.isOpenMap_re,Complex.isQuotientMap_re: in particular,Complex.reis an open map and is a quotient map;Complex.interior_preimage_re,Complex.closure_preimage_re,Complex.frontier_preimage_re: formulas forinterior (Complex.re ⁻¹' s)etc;Complex.interior_setOf_re_leetc: particular cases of the above formulas in the cases whensis one of the infinite intervalsSet.Ioi a,Set.Ici a,Set.Iio a, andSet.Iic a, formulated asinterior {z : ℂ | z.re ≤ a} = {z | z.re < a}etc.
Tags #
complex, real part, imaginary part, closure, interior, frontier
Complex.re turns ℂ into a trivial topological fiber bundle over ℝ.
Complex.im turns ℂ into a trivial topological fiber bundle over ℝ.
theorem
TendstoUniformlyOn.re
{α : Type u_1}
{ι : Type u_2}
{f : ι → α → ℂ}
{p : Filter ι}
{g : α → ℂ}
{K : Set α}
(hf : TendstoUniformlyOn f g p K)
:
TendstoUniformlyOn (fun (n : ι) (x : α) => (f n x).re) (fun (y : α) => (g y).re) p K
theorem
TendstoUniformly.re
{α : Type u_1}
{ι : Type u_2}
{f : ι → α → ℂ}
{p : Filter ι}
{g : α → ℂ}
(hf : TendstoUniformly f g p)
:
TendstoUniformly (fun (n : ι) (x : α) => (f n x).re) (fun (y : α) => (g y).re) p
theorem
TendstoUniformlyOn.im
{α : Type u_1}
{ι : Type u_2}
{f : ι → α → ℂ}
{p : Filter ι}
{g : α → ℂ}
{K : Set α}
(hf : TendstoUniformlyOn f g p K)
:
TendstoUniformlyOn (fun (n : ι) (x : α) => (f n x).im) (fun (y : α) => (g y).im) p K
theorem
TendstoUniformly.im
{α : Type u_1}
{ι : Type u_2}
{f : ι → α → ℂ}
{p : Filter ι}
{g : α → ℂ}
(hf : TendstoUniformly f g p)
:
TendstoUniformly (fun (n : ι) (x : α) => (f n x).im) (fun (y : α) => (g y).im) p