Documentation

Mathlib.Algebra.Ring.Pi

Pi instances for ring #

This file defines instances for ring, semiring and related structures on Pi Types

instance Pi.distrib {I : Type u} {f : IType v} [(i : I) → Distrib (f i)] :
Distrib ((i : I) → f i)
Equations
instance Pi.hasDistribNeg {I : Type u} {f : IType v} [(i : I) → Mul (f i)] [(i : I) → HasDistribNeg (f i)] :
HasDistribNeg ((i : I) → f i)
Equations
instance Pi.addMonoidWithOne {I : Type u} {f : IType v} [(i : I) → AddMonoidWithOne (f i)] :
AddMonoidWithOne ((i : I) → f i)
Equations
instance Pi.addGroupWithOne {I : Type u} {f : IType v} [(i : I) → AddGroupWithOne (f i)] :
AddGroupWithOne ((i : I) → f i)
Equations
instance Pi.nonUnitalNonAssocSemiring {I : Type u} {f : IType v} [(i : I) → NonUnitalNonAssocSemiring (f i)] :
NonUnitalNonAssocSemiring ((i : I) → f i)
Equations
instance Pi.nonUnitalSemiring {I : Type u} {f : IType v} [(i : I) → NonUnitalSemiring (f i)] :
NonUnitalSemiring ((i : I) → f i)
Equations
instance Pi.nonAssocSemiring {I : Type u} {f : IType v} [(i : I) → NonAssocSemiring (f i)] :
NonAssocSemiring ((i : I) → f i)
Equations
instance Pi.semiring {I : Type u} {f : IType v} [(i : I) → Semiring (f i)] :
Semiring ((i : I) → f i)
Equations
instance Pi.nonUnitalCommSemiring {I : Type u} {f : IType v} [(i : I) → NonUnitalCommSemiring (f i)] :
NonUnitalCommSemiring ((i : I) → f i)
Equations
instance Pi.commSemiring {I : Type u} {f : IType v} [(i : I) → CommSemiring (f i)] :
CommSemiring ((i : I) → f i)
Equations
instance Pi.nonUnitalNonAssocRing {I : Type u} {f : IType v} [(i : I) → NonUnitalNonAssocRing (f i)] :
NonUnitalNonAssocRing ((i : I) → f i)
Equations
instance Pi.nonUnitalRing {I : Type u} {f : IType v} [(i : I) → NonUnitalRing (f i)] :
NonUnitalRing ((i : I) → f i)
Equations
instance Pi.nonAssocRing {I : Type u} {f : IType v} [(i : I) → NonAssocRing (f i)] :
NonAssocRing ((i : I) → f i)
Equations
instance Pi.ring {I : Type u} {f : IType v} [(i : I) → Ring (f i)] :
Ring ((i : I) → f i)
Equations
instance Pi.nonUnitalCommRing {I : Type u} {f : IType v} [(i : I) → NonUnitalCommRing (f i)] :
NonUnitalCommRing ((i : I) → f i)
Equations
instance Pi.commRing {I : Type u} {f : IType v} [(i : I) → CommRing (f i)] :
CommRing ((i : I) → f i)
Equations
def Pi.nonUnitalRingHom {I : Type u} {f : IType v} {γ : Type w} [(i : I) → NonUnitalNonAssocSemiring (f i)] [NonUnitalNonAssocSemiring γ] (g : (i : I) → γ →ₙ+* f i) :
γ →ₙ+* (i : I) → f i

A family of non-unital ring homomorphisms f a : γ →ₙ+* β a defines a non-unital ring homomorphism Pi.nonUnitalRingHom f : γ →+* Π a, β a given by Pi.nonUnitalRingHom f x b = f b x.

Equations
  • Pi.nonUnitalRingHom g = { toFun := fun (x : γ) (b : I) => (g b) x, map_mul' := , map_zero' := , map_add' := }
@[simp]
theorem Pi.nonUnitalRingHom_apply {I : Type u} {f : IType v} {γ : Type w} [(i : I) → NonUnitalNonAssocSemiring (f i)] [NonUnitalNonAssocSemiring γ] (g : (i : I) → γ →ₙ+* f i) (x : γ) (b : I) :
(Pi.nonUnitalRingHom g) x b = (g b) x
theorem Pi.nonUnitalRingHom_injective {I : Type u} {f : IType v} {γ : Type w} [Nonempty I] [(i : I) → NonUnitalNonAssocSemiring (f i)] [NonUnitalNonAssocSemiring γ] (g : (i : I) → γ →ₙ+* f i) (hg : ∀ (i : I), Function.Injective (g i)) :
def Pi.ringHom {I : Type u} {f : IType v} {γ : Type w} [(i : I) → NonAssocSemiring (f i)] [NonAssocSemiring γ] (g : (i : I) → γ →+* f i) :
γ →+* (i : I) → f i

A family of ring homomorphisms f a : γ →+* β a defines a ring homomorphism Pi.ringHom f : γ →+* Π a, β a given by Pi.ringHom f x b = f b x.

Equations
  • Pi.ringHom g = { toFun := fun (x : γ) (b : I) => (g b) x, map_one' := , map_mul' := , map_zero' := , map_add' := }
@[simp]
theorem Pi.ringHom_apply {I : Type u} {f : IType v} {γ : Type w} [(i : I) → NonAssocSemiring (f i)] [NonAssocSemiring γ] (g : (i : I) → γ →+* f i) (x : γ) (b : I) :
(Pi.ringHom g) x b = (g b) x
theorem Pi.ringHom_injective {I : Type u} {f : IType v} {γ : Type w} [Nonempty I] [(i : I) → NonAssocSemiring (f i)] [NonAssocSemiring γ] (g : (i : I) → γ →+* f i) (hg : ∀ (i : I), Function.Injective (g i)) :
def Pi.evalNonUnitalRingHom {I : Type u} (f : IType v) [(i : I) → NonUnitalNonAssocSemiring (f i)] (i : I) :
((i : I) → f i) →ₙ+* f i

Evaluation of functions into an indexed collection of non-unital rings at a point is a non-unital ring homomorphism. This is Function.eval as a NonUnitalRingHom.

Equations
@[simp]
theorem Pi.evalNonUnitalRingHom_apply {I : Type u} (f : IType v) [(i : I) → NonUnitalNonAssocSemiring (f i)] (i : I) (g : (i : I) → f i) :
def Pi.constNonUnitalRingHom (α : Type u_1) (β : Type u_2) [NonUnitalNonAssocSemiring β] :
β →ₙ+* αβ

Function.const as a NonUnitalRingHom.

Equations
@[simp]
theorem Pi.constNonUnitalRingHom_apply (α : Type u_1) (β : Type u_2) [NonUnitalNonAssocSemiring β] (a : β) (a✝ : α) :
(constNonUnitalRingHom α β) a a✝ = Function.const α a a✝
def NonUnitalRingHom.compLeft {α : Type u_1} {β : Type u_2} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) (I : Type u_3) :
(Iα) →ₙ+* Iβ

Non-unital ring homomorphism between the function spaces I → α and I → β, induced by a non-unital ring homomorphism f between α and β.

Equations
  • f.compLeft I = { toFun := fun (h : Iα) => f h, map_mul' := , map_zero' := , map_add' := }
@[simp]
theorem NonUnitalRingHom.compLeft_apply {α : Type u_1} {β : Type u_2} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) (I : Type u_3) (h : Iα) (a✝ : I) :
(f.compLeft I) h a✝ = (f h) a✝
def Pi.evalRingHom {I : Type u} (f : IType v) [(i : I) → NonAssocSemiring (f i)] (i : I) :
((i : I) → f i) →+* f i

Evaluation of functions into an indexed collection of rings at a point is a ring homomorphism. This is Function.eval as a RingHom.

Equations
@[simp]
theorem Pi.evalRingHom_apply {I : Type u} (f : IType v) [(i : I) → NonAssocSemiring (f i)] (i : I) (g : (i : I) → f i) :
(evalRingHom f i) g = g i
instance instRingHomSurjectiveForallEvalRingHom {I : Type u} (f : IType u_1) [(i : I) → Semiring (f i)] (i : I) :
def Pi.constRingHom (α : Type u_1) (β : Type u_2) [NonAssocSemiring β] :
β →+* αβ

Function.const as a RingHom.

Equations
@[simp]
theorem Pi.constRingHom_apply (α : Type u_1) (β : Type u_2) [NonAssocSemiring β] (a : β) (a✝ : α) :
(constRingHom α β) a a✝ = Function.const α a a✝
def RingHom.compLeft {α : Type u_1} {β : Type u_2} [NonAssocSemiring α] [NonAssocSemiring β] (f : α →+* β) (I : Type u_3) :
(Iα) →+* Iβ

Ring homomorphism between the function spaces I → α and I → β, induced by a ring homomorphism f between α and β.

Equations
  • f.compLeft I = { toFun := fun (h : Iα) => f h, map_one' := , map_mul' := , map_zero' := , map_add' := }
@[simp]
theorem RingHom.compLeft_apply {α : Type u_1} {β : Type u_2} [NonAssocSemiring α] [NonAssocSemiring β] (f : α →+* β) (I : Type u_3) (h : Iα) (a✝ : I) :
(f.compLeft I) h a✝ = (f h) a✝