Evaluating polynomials and scalar multiplication #
Main results #
eval₂_smul,eval_smul,map_smul,comp_smul: the functions preserve scalar multiplicationPolynomial.leval:Polynomial.evalas linear map
@[simp]
theorem
Polynomial.eval_smul
{R : Type u}
{S : Type v}
[Semiring R]
[SMulZeroClass S R]
[IsScalarTower S R R]
(s : S)
(p : Polynomial R)
(x : R)
:
Polynomial.eval as linear map
Equations
- Polynomial.leval r = { toFun := fun (f : Polynomial R) => Polynomial.eval r f, map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
@[simp]
theorem
Polynomial.smul_comp
{R : Type u}
{S : Type v}
[Semiring R]
[SMulZeroClass S R]
[IsScalarTower S R R]
(s : S)
(p q : Polynomial R)
: