PartialSups in a SuccAddOrder #
Basic results concerning PartialSups which follow with minimal assumptions beyond the fact that
the PartialSup is defined over a SuccAddOrder.
@[simp]
theorem
partialSups_add_one
{α : Type u_1}
{ι : Type u_2}
[SemilatticeSup α]
[LinearOrder ι]
[Add ι]
[One ι]
[LocallyFiniteOrderBot ι]
[SuccAddOrder ι]
(f : ι → α)
(i : ι)
:
theorem
partialSups_succ'
{ι : Type u_2}
[LinearOrder ι]
{α : Type u_3}
[SemilatticeSup α]
[LocallyFiniteOrder ι]
[SuccOrder ι]
[OrderBot ι]
(f : ι → α)
(i : ι)
:
See partialSups_succ for another decomposition of (partialSups f) (Order.succ i).
theorem
partialSups_add_one'
{α : Type u_1}
{ι : Type u_2}
[SemilatticeSup α]
[LinearOrder ι]
[Add ι]
[One ι]
[OrderBot ι]
[LocallyFiniteOrder ι]
[SuccAddOrder ι]
(f : ι → α)
(i : ι)
:
See partialSups_add_one for another decomposition of partialSups f (i + 1).