Documentation

Mathlib.Algebra.Order.BigOperators.GroupWithZero.Multiset

Big operators on a multiset in ordered groups with zeros #

This file contains the results concerning the interaction of multiset big operators with ordered groups with zeros.

theorem Multiset.prod_nonneg {R : Type u_1} [CommMonoidWithZero R] [PartialOrder R] [ZeroLEOneClass R] [PosMulMono R] {s : Multiset R} (h : ∀ (a : R), a s0 a) :
0 s.prod
theorem Multiset.one_le_prod {R : Type u_1} [CommMonoidWithZero R] [PartialOrder R] [ZeroLEOneClass R] [PosMulMono R] {s : Multiset R} (h : ∀ (a : R), a s1 a) :
1 s.prod
theorem Multiset.prod_map_le_prod_map₀ {R : Type u_1} [CommMonoidWithZero R] [PartialOrder R] [ZeroLEOneClass R] [PosMulMono R] {ι : Type u_2} {s : Multiset ι} (f g : ιR) (h0 : ∀ (i : ι), i s0 f i) (h : ∀ (i : ι), i sf i g i) :
(map f s).prod (map g s).prod
theorem Multiset.prod_map_le_pow_card {R : Type u_1} [CommMonoidWithZero R] [PartialOrder R] [ZeroLEOneClass R] [PosMulMono R] {F : Type u_2} {L : Type u_3} [FunLike F L R] {f : F} {r : R} {t : Multiset L} (hf0 : ∀ (x : L), x t0 f x) (hf : ∀ (x : L), x tf x r) :
(map (⇑f) t).prod r ^ t.card
theorem Multiset.prod_pos {R : Type u_1} [CommMonoidWithZero R] [PartialOrder R] [ZeroLEOneClass R] [PosMulStrictMono R] [NeZero 1] {s : Multiset R} (h : ∀ (a : R), a s0 < a) :
0 < s.prod
theorem Multiset.prod_map_lt_prod_map {R : Type u_1} [CommMonoidWithZero R] [PartialOrder R] [ZeroLEOneClass R] [PosMulStrictMono R] [NeZero 1] {ι : Type u_2} {s : Multiset ι} (hs : s 0) (f g : ιR) (h0 : ∀ (i : ι), i s0 < f i) (h : ∀ (i : ι), i sf i < g i) :
(map f s).prod < (map g s).prod