Big operators indexed by intervals #
This file proves lemmas about ∏ x ∈ Ixx a b, f x and ∑ x ∈ Ixx a b, f x.
Alias of Finset.mul_prod_Ico_eq_prod_Icc.
Alias of Finset.add_sum_Ico_eq_sum_Icc.
Alias of Finset.prod_Ico_mul_eq_prod_Icc.
Alias of Finset.sum_Ico_add_eq_sum_Icc.
Alias of Finset.mul_prod_Ioc_eq_prod_Icc.
Alias of Finset.add_sum_Ioc_eq_sum_Icc.
Alias of Finset.prod_Ioc_mul_eq_prod_Icc.
Alias of Finset.sum_Ioc_add_eq_sum_Icc.
Alias of Finset.mul_prod_Ioo_eq_prod_Ico.
Alias of Finset.add_sum_Ioo_eq_sum_Ico.
Alias of Finset.prod_Ioo_mul_eq_prod_Ico.
Alias of Finset.sum_Ioo_add_eq_sum_Ico.
Alias of Finset.mul_prod_Ioo_eq_prod_Ioc.
Alias of Finset.add_sum_Ioo_eq_sum_Ioc.
Alias of Finset.prod_Ioo_mul_eq_prod_Ioc.
Alias of Finset.sum_Ioo_add_eq_sum_Ioc.
Alias of Finset.mul_prod_Ioi_eq_prod_Ici.
Alias of Finset.add_sum_Ioi_eq_sum_Ici.
Alias of Finset.prod_Ioi_mul_eq_prod_Ici.
Alias of Finset.sum_Ioi_add_eq_sum_Ici.
Alias of Finset.mul_prod_Iio_eq_prod_Iic.
Alias of Finset.add_sum_Iio_eq_sum_Iic.
Alias of Finset.prod_Iio_mul_eq_prod_Iic.
Alias of Finset.sum_Iio_add_eq_sum_Iic.