Linear maps involving submodules of a module #
In this file we define a number of linear maps involving submodules of a module.
Main declarations #
Submodule.subtype: Embedding of a submodulepto the ambient spaceMas aSubmodule.LinearMap.domRestrict: The restriction of a semilinear mapf : M → M₂to a submodulep ⊆ Mas a semilinear mapp → M₂.LinearMap.restrict: The restriction of a linear mapf : M → M₁to a submodulep ⊆ Mandq ⊆ M₁(ifqcontains the codomain).Submodule.inclusion: the inclusionp ⊆ p'of submodulespandp'as a linear map.
Tags #
submodule, subspace, linear map
The natural R-linear map from a submodule of an R-module M to M.
Equations
- SMulMemClass.subtype S' = { toFun := Subtype.val, map_add' := ⋯, map_smul' := ⋯ }
Instances For
Embedding of a submodule p to the ambient space M.
Equations
- p.subtype = { toFun := Subtype.val, map_add' := ⋯, map_smul' := ⋯ }
Instances For
Note the AddSubmonoid version of this lemma is called AddSubmonoid.coe_finset_sum.
The action by a submodule is the action by the underlying module.
Equations
The restriction of a linear map f : M → M₂ to a submodule p ⊆ M gives a linear map
p → M₂.
Equations
- f.domRestrict p = f ∘ₛₗ p.subtype
Instances For
A linear map f : M₂ → M whose values lie in a submodule p ⊆ M can be restricted to a
linear map M₂ → p.
See also LinearMap.codLift.
Equations
Instances For
A linear map f : M → M₂ whose values lie in the image of an injective linear map
p : M₂' → M₂ admits a unique lift to a linear map M → M₂'.
Equations
- f.codLift p hp h = { toFun := fun (c : M) => Exists.choose ⋯, map_add' := ⋯, map_smul' := ⋯ }
Instances For
Restrict domain and codomain of a linear map.
Equations
- f.restrict hf = LinearMap.codRestrict q (f.domRestrict p) ⋯
Instances For
Alternative version of domRestrict as a linear map.
Equations
- LinearMap.domRestrict' p = { toFun := fun (φ : M →ₗ[R] M₂) => φ.domRestrict p, map_add' := ⋯, map_smul' := ⋯ }
Instances For
If two submodules p and p' satisfy p ⊆ p', then inclusion p p' is the linear map version
of this inclusion.
Equations
- Submodule.inclusion h = LinearMap.codRestrict p' p.subtype ⋯