Documentation
Mathlib
.
Algebra
.
Group
.
Pointwise
.
Set
.
Card
Search
return to top
source
Imports
Init
Mathlib.Data.Set.Card
Mathlib.Algebra.Group.Action.Basic
Mathlib.Algebra.Group.Pointwise.Set.Finite
Imported by
Cardinal
.
mk_mul_le
Cardinal
.
mk_add_le
Set
.
natCard_mul_le
Set
.
natCard_add_le
Cardinal
.
mk_inv
Cardinal
.
mk_neg
Set
.
natCard_inv
Set
.
natCard_neg
Set
.
encard_inv
Set
.
encard_neg
Set
.
ncard_inv
Set
.
ncard_neg
Cardinal
.
mk_div_le
Cardinal
.
mk_sub_le
Set
.
natCard_div_le
Set
.
natCard_sub_le
Cardinal
.
mk_smul_set
Cardinal
.
mk_vadd_set
Set
.
natCard_smul_set
Set
.
natCard_vadd_set
Set
.
encard_smul_set
Set
.
encard_vadd_set
Set
.
ncard_smul_set
Set
.
ncard_vadd_set
Cardinalities of pointwise operations on sets
#
source
theorem
Cardinal
.
mk_mul_le
{
M
:
Type
u_2}
[
Mul
M
]
{
s
t
:
Set
M
}
:
mk
↑(
s
*
t
)
≤
mk
↑
s
*
mk
↑
t
source
theorem
Cardinal
.
mk_add_le
{
M
:
Type
u_2}
[
Add
M
]
{
s
t
:
Set
M
}
:
mk
↑(
s
+
t
)
≤
mk
↑
s
*
mk
↑
t
source
theorem
Set
.
natCard_mul_le
{
M
:
Type
u_2}
[
Mul
M
]
{
s
t
:
Set
M
}
[
IsCancelMul
M
]
:
Nat.card
↑(
s
*
t
)
≤
Nat.card
↑
s
*
Nat.card
↑
t
source
theorem
Set
.
natCard_add_le
{
M
:
Type
u_2}
[
Add
M
]
{
s
t
:
Set
M
}
[
IsCancelAdd
M
]
:
Nat.card
↑(
s
+
t
)
≤
Nat.card
↑
s
*
Nat.card
↑
t
source
@[simp]
theorem
Cardinal
.
mk_inv
{
G
:
Type
u_1}
[
InvolutiveInv
G
]
(
s
:
Set
G
)
:
mk
↑
s
⁻¹
=
mk
↑
s
source
@[simp]
theorem
Cardinal
.
mk_neg
{
G
:
Type
u_1}
[
InvolutiveNeg
G
]
(
s
:
Set
G
)
:
mk
↑(
-
s
)
=
mk
↑
s
source
@[simp]
theorem
Set
.
natCard_inv
{
G
:
Type
u_1}
[
InvolutiveInv
G
]
(
s
:
Set
G
)
:
Nat.card
↑
s
⁻¹
=
Nat.card
↑
s
source
@[simp]
theorem
Set
.
natCard_neg
{
G
:
Type
u_1}
[
InvolutiveNeg
G
]
(
s
:
Set
G
)
:
Nat.card
↑(
-
s
)
=
Nat.card
↑
s
source
@[simp]
theorem
Set
.
encard_inv
{
G
:
Type
u_1}
[
InvolutiveInv
G
]
(
s
:
Set
G
)
:
s
⁻¹
.
encard
=
s
.
encard
source
@[simp]
theorem
Set
.
encard_neg
{
G
:
Type
u_1}
[
InvolutiveNeg
G
]
(
s
:
Set
G
)
:
(
-
s
).
encard
=
s
.
encard
source
@[simp]
theorem
Set
.
ncard_inv
{
G
:
Type
u_1}
[
InvolutiveInv
G
]
(
s
:
Set
G
)
:
s
⁻¹
.
ncard
=
s
.
ncard
source
@[simp]
theorem
Set
.
ncard_neg
{
G
:
Type
u_1}
[
InvolutiveNeg
G
]
(
s
:
Set
G
)
:
(
-
s
).
ncard
=
s
.
ncard
source
theorem
Cardinal
.
mk_div_le
{
M
:
Type
u_2}
[
DivInvMonoid
M
]
{
s
t
:
Set
M
}
:
mk
↑(
s
/
t
)
≤
mk
↑
s
*
mk
↑
t
source
theorem
Cardinal
.
mk_sub_le
{
M
:
Type
u_2}
[
SubNegMonoid
M
]
{
s
t
:
Set
M
}
:
mk
↑(
s
-
t
)
≤
mk
↑
s
*
mk
↑
t
source
theorem
Set
.
natCard_div_le
{
G
:
Type
u_1}
[
Group
G
]
{
s
t
:
Set
G
}
:
Nat.card
↑(
s
/
t
)
≤
Nat.card
↑
s
*
Nat.card
↑
t
source
theorem
Set
.
natCard_sub_le
{
G
:
Type
u_1}
[
AddGroup
G
]
{
s
t
:
Set
G
}
:
Nat.card
↑(
s
-
t
)
≤
Nat.card
↑
s
*
Nat.card
↑
t
source
@[simp]
theorem
Cardinal
.
mk_smul_set
{
G
:
Type
u_1}
{
α
:
Type
u_3}
[
Group
G
]
[
MulAction
G
α
]
(
a
:
G
)
(
s
:
Set
α
)
:
mk
↑(
a
•
s
)
=
mk
↑
s
source
@[simp]
theorem
Cardinal
.
mk_vadd_set
{
G
:
Type
u_1}
{
α
:
Type
u_3}
[
AddGroup
G
]
[
AddAction
G
α
]
(
a
:
G
)
(
s
:
Set
α
)
:
mk
↑(
a
+ᵥ
s
)
=
mk
↑
s
source
@[simp]
theorem
Set
.
natCard_smul_set
{
G
:
Type
u_1}
{
α
:
Type
u_3}
[
Group
G
]
[
MulAction
G
α
]
(
a
:
G
)
(
s
:
Set
α
)
:
Nat.card
↑(
a
•
s
)
=
Nat.card
↑
s
source
@[simp]
theorem
Set
.
natCard_vadd_set
{
G
:
Type
u_1}
{
α
:
Type
u_3}
[
AddGroup
G
]
[
AddAction
G
α
]
(
a
:
G
)
(
s
:
Set
α
)
:
Nat.card
↑(
a
+ᵥ
s
)
=
Nat.card
↑
s
source
@[simp]
theorem
Set
.
encard_smul_set
{
G
:
Type
u_1}
{
α
:
Type
u_3}
[
Group
G
]
[
MulAction
G
α
]
(
a
:
G
)
(
s
:
Set
α
)
:
(
a
•
s
).
encard
=
s
.
encard
source
@[simp]
theorem
Set
.
encard_vadd_set
{
G
:
Type
u_1}
{
α
:
Type
u_3}
[
AddGroup
G
]
[
AddAction
G
α
]
(
a
:
G
)
(
s
:
Set
α
)
:
(
a
+ᵥ
s
).
encard
=
s
.
encard
source
@[simp]
theorem
Set
.
ncard_smul_set
{
G
:
Type
u_1}
{
α
:
Type
u_3}
[
Group
G
]
[
MulAction
G
α
]
(
a
:
G
)
(
s
:
Set
α
)
:
(
a
•
s
).
ncard
=
s
.
ncard
source
@[simp]
theorem
Set
.
ncard_vadd_set
{
G
:
Type
u_1}
{
α
:
Type
u_3}
[
AddGroup
G
]
[
AddAction
G
α
]
(
a
:
G
)
(
s
:
Set
α
)
:
(
a
+ᵥ
s
).
ncard
=
s
.
ncard