Torsors of additive group actions #
Further results for torsors, that are not in Mathlib/Algebra/AddTorsor/Defs.lean
to avoid
increasing imports there.
theorem
vsub_left_injective
{G : Type u_1}
{P : Type u_2}
[AddGroup G]
[T : AddTorsor G P]
(p : P)
:
Function.Injective fun (x : P) => x -ᵥ p
Subtracting the point p
is an injective function.
theorem
vsub_right_injective
{G : Type u_1}
{P : Type u_2}
[AddGroup G]
[T : AddTorsor G P]
(p : P)
:
Function.Injective fun (x : P) => p -ᵥ x
Subtracting a point from the point p
is an injective
function.
Equiv.constVAdd
as a homomorphism from Multiplicative G
to Equiv.perm P
Equations
- Equiv.constVAddHom P = { toFun := fun (v : Multiplicative G) => Equiv.constVAdd P (Multiplicative.toAdd v), map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
Equiv.left_vsub_pointReflection
{G : Type u_1}
{P : Type u_2}
[AddGroup G]
[AddTorsor G P]
(x y : P)
:
theorem
Equiv.pointReflection_fixed_iff_of_injective_two_nsmul
{G : Type u_1}
{P : Type u_2}
[AddGroup G]
[AddTorsor G P]
{x y : P}
(h : Function.Injective fun (x : G) => 2 • x)
:
x
is the only fixed point of pointReflection x
. This lemma requires
x + x = y + y ↔ x = y
. There is no typeclass to use here, so we add it as an explicit argument.
theorem
Equiv.injective_pointReflection_left_of_injective_two_nsmul
{G : Type u_3}
{P : Type u_4}
[AddCommGroup G]
[AddTorsor G P]
(h : Function.Injective fun (x : G) => 2 • x)
(y : P)
:
Function.Injective fun (x : P) => (pointReflection x) y
In the special case of additive commutative groups (as opposed to just additive torsors),
Equiv.pointReflection x
coincides with Equiv.subLeft (2 • x)
.