Documentation

Lean.Exception

inductive Lean.Exception :

Exception type used in most Lean monads

  • error (ref : Syntax) (msg : MessageData) : Exception

    Error messages that are displayed to users. ref is used to provide position information.

  • internal (id : InternalExceptionId) (extra : KVMap := { entries := [] }) : Exception

    Internal exceptions that are not meant to be seen by users. Examples: "postpone elaboration", "stuck at universe constraint", etc.

Instances For

Convert exception into a structured message.

Equations
Equations

Return syntax object providing position information for the exception. Recall that internal exceptions do not have position information.

Equations

Similar to AddMessageContext, but for error messages. The default instance just uses AddMessageContext. In error messages, we may want to provide additional information (e.g., macro expansion stack), and refine the (ref : Syntax).

Instances
Instances
    def Lean.throwError {m : TypeType} {α : Type} [Monad m] [MonadError m] (msg : MessageData) :
    m α

    Throw an error exception using the given message data. The result of getRef is used as position information. Recall that getRef returns the current "reference" syntax.

    Equations
    def Lean.throwUnknownConstant {m : TypeType} {α : Type} [Monad m] [MonadError m] (constName : Name) :
    m α

    Throw an unknown constant error message.

    Equations
    def Lean.throwErrorAt {m : TypeType} {α : Type} [Monad m] [MonadError m] (ref : Syntax) (msg : MessageData) :
    m α

    Throw an error exception using the given message data and reference syntax.

    Equations
    def Lean.ofExcept {m : TypeType} {ε α : Type} [Monad m] [MonadError m] [ToMessageData ε] (x : Except ε α) :
    m α

    Convert an Except into a m monadic action, where m is any monad that implements MonadError.

    Equations
    def Lean.throwKernelException {m : TypeType} {α : Type} [Monad m] [MonadError m] [MonadOptions m] (ex : KernelException) :
    m α

    Throw an error exception for the given kernel exception.

    Equations

    Lift from Except KernelException to m when m can throw kernel exceptions.

    Equations
    Equations
    • One or more equations did not get rendered due to their size.
    def Lean.throwMaxRecDepthAt {m : TypeType} {α : Type} [MonadError m] (ref : Syntax) :
    m α

    Throw a "maximum recursion depth has been reached" exception using the given reference syntax.

    Equations
    • One or more equations did not get rendered due to their size.

    Return true if ex was generated by throwMaxRecDepthAt. This function is a bit hackish. The max rec depth exception should probably be an internal exception, but it is also produced by MacroM which implemented in the prelude, and internal exceptions have not been defined yet.

    Equations
    @[inline]
    def Lean.withIncRecDepth {m : TypeType} {α : Type} [Monad m] [MonadError m] [MonadRecDepth m] (x : m α) :
    m α

    Increment the current recursion depth and then execute x. Throw an exception if maximum recursion depth has been reached. We use this combinator to prevent stack overflows.

    Equations
    • One or more equations did not get rendered due to their size.

    Macro for throwing error exceptions. The argument can be an interpolated string. It is a convenient way of building MessageData objects. The result of getRef is used as position information. Recall that getRef returns the current "reference" syntax.

    Equations
    • One or more equations did not get rendered due to their size.

    Macro for throwing error exceptions. The argument can be an interpolated string. It is a convenient way of building MessageData objects. The first argument must be a Syntax that provides position information for the error message. throwErrorAt ref msg is equivalent to withRef ref <| throwError msg

    Equations
    • One or more equations did not get rendered due to their size.