Logarithms of Euler Products #
Here we consider f : ℕ →*₀ ℂ
and the goal is to prove that
exp (∑ p in Primes, log (1 - f p)⁻¹) = ∑ n : ℕ, f n
under suitable conditions on f
.
theorem
sum_primesBelow_eq_sum_range_indicator
{R : Type u_1}
[AddCommMonoid R]
(f : ℕ → R)
(n : ℕ)
:
∑ p ∈ n.primesBelow, f p = ∑ m ∈ Finset.range n, {p : ℕ | Nat.Prime p}.indicator f m
theorem
tendsto_sum_primesBelow_tsum
{R : Type u_1}
[AddCommGroup R]
[UniformSpace R]
[UniformAddGroup R]
[CompleteSpace R]
[T2Space R]
{f : ℕ → R}
(hsum : Summable f)
:
Filter.Tendsto (fun (n : ℕ) => ∑ p ∈ n.primesBelow, f p) Filter.atTop (nhds (∑' (p : Nat.Primes), f ↑p))
If f : ℕ → R
is summable, then the limit as n
tends to infinity of the sum of f p
over the primes p < n
is the same as the sum of f p
over all primes.
theorem
Complex.exp_tsum_primes
{f : ℕ → ℂ}
(hsum : Summable f)
:
Filter.Tendsto (fun (n : ℕ) => ∏ p ∈ n.primesBelow, Complex.exp (f p)) Filter.atTop
(nhds (Complex.exp (∑' (p : Nat.Primes), f ↑p)))
If f : ℕ → ℂ
is summable, then the limit as n
tends to infinity of the product
of exp (f p)
over the primes p < n
is the same as the exponential of the sum of f p
over all primes.
theorem
Summable.neg_clog_one_sub
{α : Type u_1}
{f : α → ℂ}
(hsum : Summable f)
:
Summable fun (n : α) => -Complex.log (1 - f n)
If f : α → ℂ
is summable, then so is n ↦ -log (1 - f n)
.
theorem
EulerProduct.exp_sum_primes_log_eq_tsum
{f : ℕ →*₀ ℂ}
(hsum : Summable fun (x : ℕ) => ‖f x‖)
:
Complex.exp (∑' (p : Nat.Primes), -Complex.log (1 - f ↑p)) = ∑' (n : ℕ), f n
A variant of the Euler Product formula in terms of the exponential of a sum of logarithms.
theorem
EulerProduct.exp_sum_primes_log_eq_tsum'
{f : ℕ → ℂ}
(h₀ : f 0 = 0)
(h₁ : f 1 = 1)
(hf : ∀ (m n : ℕ), f (m * n) = f m * f n)
(hsum : Summable fun (x : ℕ) => ‖f x‖)
:
Complex.exp (∑' (p : Nat.Primes), -Complex.log (1 - f ↑p)) = ∑' (n : ℕ), f n
A variant of the Euler Product formula in terms of the exponential of a sum of logarithms.