Documentation

EulerProducts.Logarithm

Logarithms of Euler Products #

Here we consider f : ℕ →*₀ ℂ and the goal is to prove that exp (∑ p in Primes, log (1 - f p)⁻¹) = ∑ n : ℕ, f n under suitable conditions on f.

theorem sum_primesBelow_eq_sum_range_indicator {R : Type u_1} [AddCommMonoid R] (f : R) (n : ) :
pn.primesBelow, f p = mFinset.range n, {p : | Nat.Prime p}.indicator f m
theorem tendsto_sum_primesBelow_tsum {R : Type u_1} [AddCommGroup R] [UniformSpace R] [UniformAddGroup R] [CompleteSpace R] [T2Space R] {f : R} (hsum : Summable f) :
Filter.Tendsto (fun (n : ) => pn.primesBelow, f p) Filter.atTop (nhds (∑' (p : Nat.Primes), f p))

If f : ℕ → R is summable, then the limit as n tends to infinity of the sum of f p over the primes p < n is the same as the sum of f p over all primes.

theorem Complex.exp_tsum_primes {f : } (hsum : Summable f) :
Filter.Tendsto (fun (n : ) => pn.primesBelow, Complex.exp (f p)) Filter.atTop (nhds (Complex.exp (∑' (p : Nat.Primes), f p)))

If f : ℕ → ℂ is summable, then the limit as n tends to infinity of the product of exp (f p) over the primes p < n is the same as the exponential of the sum of f p over all primes.

theorem Summable.neg_clog_one_sub {α : Type u_1} {f : α} (hsum : Summable f) :
Summable fun (n : α) => -Complex.log (1 - f n)

If f : α → ℂ is summable, then so is n ↦ -log (1 - f n).

theorem EulerProduct.exp_sum_primes_log_eq_tsum {f : →*₀ } (hsum : Summable fun (x : ) => f x) :
Complex.exp (∑' (p : Nat.Primes), -Complex.log (1 - f p)) = ∑' (n : ), f n

A variant of the Euler Product formula in terms of the exponential of a sum of logarithms.

theorem EulerProduct.exp_sum_primes_log_eq_tsum' {f : } (h₀ : f 0 = 0) (h₁ : f 1 = 1) (hf : ∀ (m n : ), f (m * n) = f m * f n) (hsum : Summable fun (x : ) => f x) :
Complex.exp (∑' (p : Nat.Primes), -Complex.log (1 - f p)) = ∑' (n : ), f n

A variant of the Euler Product formula in terms of the exponential of a sum of logarithms.