Documentation

EulerProducts.Auxiliary

Auxiliary lemmas #

theorem Complex.summable_re {α : Type u_1} {f : α} (h : Summable f) :
Summable fun (x : α) => (f x).re
theorem Complex.summable_im {α : Type u_1} {f : α} (h : Summable f) :
Summable fun (x : α) => (f x).im
theorem DifferentiableAt.isBigO_of_eq_zero {f : } {z : } (hf : DifferentiableAt f z) (hz : f z = 0) :
(fun (w : ) => f (w + z)) =O[nhds 0] id
theorem ContinuousAt.isBigO {f : } {z : } (hf : ContinuousAt f z) :
(fun (w : ) => f (w + z)) =O[nhds 0] fun (x : ) => 1
theorem Complex.isBigO_comp_ofReal {f : } {g : } {x : } (h : f =O[nhds x] g) :
(fun (y : ) => f y) =O[nhds x] fun (y : ) => g y
theorem Complex.isBigO_comp_ofReal_nhds_ne {f : } {g : } {x : } (h : f =O[nhdsWithin x {x}] g) :
(fun (y : ) => f y) =O[nhdsWithin x {x}] fun (y : ) => g y
theorem DifferentiableAt.comp_ofReal {e : } {z : } (hf : DifferentiableAt e z) :
DifferentiableAt (fun (x : ) => e x) z
theorem deriv.comp_ofReal {e : } {z : } (hf : DifferentiableAt e z) :
deriv (fun (x : ) => e x) z = deriv e z
theorem Differentiable.comp_ofReal {e : } (h : Differentiable e) :
Differentiable fun (x : ) => e x
theorem DifferentiableAt.ofReal_comp {z : } {f : } (hf : DifferentiableAt f z) :
DifferentiableAt (fun (y : ) => (f y)) z
theorem Differentiable.ofReal_comp {f : } (hf : Differentiable f) :
Differentiable fun (y : ) => (f y)
theorem HasDerivAt.of_hasDerivAt_ofReal_comp {z : } {f : } {u : } (hf : HasDerivAt (fun (y : ) => (f y)) u z) :
∃ (u' : ), u = u' HasDerivAt f u' z
theorem DifferentiableAt.ofReal_comp_iff {z : } {f : } :
DifferentiableAt (fun (y : ) => (f y)) z DifferentiableAt f z
theorem deriv.ofReal_comp {z : } {f : } :
deriv (fun (y : ) => (f y)) z = (deriv f z)
theorem Complex.realValued_of_iteratedDeriv_real_on_ball {f : } ⦃r : {c : } (hf : DifferentiableOn f (Metric.ball (↑c) r)) ⦃D : (hd : ∀ (n : ), iteratedDeriv n f c = (D n)) :
∃ (F : ), DifferentiableOn F (Set.Ioo (c - r) (c + r)) Set.EqOn (f Complex.ofReal) (Complex.ofReal F) (Set.Ioo (c - r) (c + r))

A function that is complex differentiable on the open ball of radius r around c, where c is real, and all whose iterated derivatives at c are real can be given by a real differentiable function on the real open interval from c-r to c+r.

theorem Complex.realValued_of_iteratedDeriv_real {f : } (hf : Differentiable f) {c : } {D : } (hd : ∀ (n : ), iteratedDeriv n f c = (D n)) :

A function that is complex differentiable on the complex plane and all whose iterated derivatives at a real point c are real can be given by a real differentiable function on the real line.

An entire function whose iterated derivatives at zero are all nonnegative real is monotonic on the nonnegative real axis.