Auxiliary lemmas #
theorem
DifferentiableAt.comp_ofReal
{e : ℂ → ℂ}
{z : ℝ}
(hf : DifferentiableAt ℂ e ↑z)
:
DifferentiableAt ℝ (fun (x : ℝ) => e ↑x) z
theorem
Differentiable.comp_ofReal
{e : ℂ → ℂ}
(h : Differentiable ℂ e)
:
Differentiable ℝ fun (x : ℝ) => e ↑x
theorem
DifferentiableAt.ofReal_comp
{z : ℝ}
{f : ℝ → ℝ}
(hf : DifferentiableAt ℝ f z)
:
DifferentiableAt ℝ (fun (y : ℝ) => ↑(f y)) z
theorem
Differentiable.ofReal_comp
{f : ℝ → ℝ}
(hf : Differentiable ℝ f)
:
Differentiable ℝ fun (y : ℝ) => ↑(f y)
theorem
HasDerivAt.of_hasDerivAt_ofReal_comp
{z : ℝ}
{f : ℝ → ℝ}
{u : ℂ}
(hf : HasDerivAt (fun (y : ℝ) => ↑(f y)) u z)
:
∃ (u' : ℝ), u = ↑u' ∧ HasDerivAt f u' z
theorem
DifferentiableAt.ofReal_comp_iff
{z : ℝ}
{f : ℝ → ℝ}
:
DifferentiableAt ℝ (fun (y : ℝ) => ↑(f y)) z ↔ DifferentiableAt ℝ f z
theorem
Differentiable.ofReal_comp_iff
{f : ℝ → ℝ}
:
(Differentiable ℝ fun (y : ℝ) => ↑(f y)) ↔ Differentiable ℝ f
theorem
Complex.realValued_of_iteratedDeriv_real_on_ball
{f : ℂ → ℂ}
⦃r : ℝ⦄
{c : ℝ}
(hf : DifferentiableOn ℂ f (Metric.ball (↑c) r))
⦃D : ℕ → ℝ⦄
(hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n))
:
A function that is complex differentiable on the open ball of radius r
around c
,
where c
is real, and all whose iterated derivatives at c
are real can be given by a real
differentiable function on the real open interval from c-r
to c+r
.
theorem
Complex.realValued_of_iteratedDeriv_real
{f : ℂ → ℂ}
(hf : Differentiable ℂ f)
{c : ℝ}
{D : ℕ → ℝ}
(hd : ∀ (n : ℕ), iteratedDeriv n f ↑c = ↑(D n))
:
∃ (F : ℝ → ℝ), Differentiable ℝ F ∧ f ∘ Complex.ofReal = Complex.ofReal ∘ F
A function that is complex differentiable on the complex plane and all whose iterated
derivatives at a real point c
are real can be given by a real differentiable function
on the real line.
theorem
monotoneOn_of_iteratedDeriv_nonneg
{f : ℂ → ℂ}
(hf : Differentiable ℂ f)
(h : ∀ (n : ℕ), 0 ≤ iteratedDeriv n f 0)
:
MonotoneOn (f ∘ Complex.ofReal) (Set.Ici 0)
An entire function whose iterated derivatives at zero are all nonnegative real is monotonic on the nonnegative real axis.