Documentation

PrimeNumberTheoremAnd.eSHP

theorem eSHP.table_8_prime_gap_test (p g : ) (h : (p, g) table_8) (htest : p < 30) :
theorem eSHP.table_8_prime_gap_complete_test (p g : ) (hp : p 30) (hrecord : prime_gap_record p g) :
theorem eSHP.table_8_prime_gap_complete (p g : ) (hp : p 4 * 10 ^ 18) (hrecord : prime_gap_record p g) :
theorem eSHP.max_prime_gap (n : ) (hp : nth_prime n 4 * 10 ^ 18) :
theorem eSHP.table_9_prime_gap_test (g P : ) (h : (g, P) table_9) (htest : P < 30) :
theorem eSHP.table_9_prime_gap_complete_test (g P : ) (hg : g < 8) (hg' : 0 < g) (hrecord : first_gap_record g P) :
theorem eSHP.table_9_prime_gap_complete (g P : ) (hg : g < 1346) (hg' : 0 < g) (hrecord : first_gap_record g P) :
theorem eSHP.exists_prime_gap (g : ) (hg : g Set.Ico 1 1476) (hg' : Even g g = 1) :
first_gap g 3278018069102480227