theorem
eSHP.table_8_prime_gap_test
(p g : ℕ)
(h : (p, g) ∈ table_8)
(htest : p < 30)
:
prime_gap_record p g
theorem
eSHP.table_8_prime_gap_complete_test
(p g : ℕ)
(hp : p ≤ 30)
(hrecord : prime_gap_record p g)
:
theorem
eSHP.exists_prime_gap_record_le
(n : ℕ)
:
∃ (m : ℕ),
nth_prime m ≤ nth_prime n ∧ nth_prime_gap n ≤ nth_prime_gap m ∧ prime_gap_record (nth_prime m) (nth_prime_gap m)
theorem
eSHP.table_9_prime_gap_test
(g P : ℕ)
(h : (g, P) ∈ table_9)
(htest : P < 30)
:
first_gap_record g P