@[reducible, inline]
Equations
- divRemovable_zero f = Function.update (fun (z : ℂ) => f z / z) 0 (deriv f 0)
Instances For
theorem
AnalyticOn_divRemovable_zero_closedBall
{f : ℂ → ℂ}
{R : ℝ}
(Rpos : 0 < R)
(analytic : AnalyticOn ℂ f (Metric.closedBall 0 R))
(zero : f 0 = 0)
:
AnalyticOn ℂ (divRemovable_zero f) (Metric.closedBall 0 R)
@[reducible, inline]
Equations
- schwartzQuotient f M z = divRemovable_zero f z / (2 * ↑M - f z)
Instances For
theorem
AnalyticOn.schwartzQuotient
{f : ℂ → ℂ}
{R : ℝ}
(M : ℝ)
(Rpos : 0 < R)
(analytic : AnalyticOn ℂ f (Metric.closedBall 0 R))
(nonzero : ∀ z ∈ Metric.closedBall 0 R, 2 * ↑M - f z ≠ 0)
(zero : f 0 = 0)
:
AnalyticOn ℂ (_root_.schwartzQuotient f M) (Metric.closedBall 0 R)
theorem
AnalyticOn.norm_le_of_norm_le_on_sphere
{f : ℂ → ℂ}
{C R r : ℝ}
(analytic : AnalyticOn ℂ f (Metric.closedBall 0 R))
(hyp_r : r ≤ R)
(cond : ∀ z ∈ Metric.sphere 0 r, ‖f z‖ ≤ C)
(w : ℂ)
(wInS : w ∈ Metric.closedBall 0 r)
:
theorem
borelCaratheodory_closedBall
{M R r : ℝ}
{z : ℂ}
{f : ℂ → ℂ}
(Rpos : 0 < R)
(analytic : AnalyticOn ℂ f (Metric.closedBall 0 R))
(zeroAtZero : f 0 = 0)
(Mpos : 0 < M)
(realPartBounded : ∀ z ∈ Metric.closedBall 0 R, (f z).re ≤ M)
(hyp_r : r < R)
(hyp_z : z ∈ Metric.closedBall 0 r)
: