Documentation

PrimeNumberTheoremAnd.StrongPNT.BorelCaratheodory

@[reducible, inline]
noncomputable abbrev divRemovable_zero (f : ) :
Equations
Instances For
    theorem divRemovable_zero_of_ne_zero {z : } (f : ) (z_ne_0 : z 0) :
    theorem AnalyticOn.divRemovable_zero {f : } {s : Set } (sInNhds0 : s nhds 0) (zero : f 0 = 0) (o : IsOpen s) (analytic : AnalyticOn f s) :
    theorem AnalyticOn_divRemovable_zero_closedBall {f : } {R : } (Rpos : 0 < R) (analytic : AnalyticOn f (Metric.closedBall 0 R)) (zero : f 0 = 0) :
    @[reducible, inline]
    noncomputable abbrev schwartzQuotient (f : ) (M : ) :
    Equations
    Instances For
      theorem AnalyticOn.schwartzQuotient {f : } {R : } (M : ) (Rpos : 0 < R) (analytic : AnalyticOn f (Metric.closedBall 0 R)) (nonzero : zMetric.closedBall 0 R, 2 * M - f z 0) (zero : f 0 = 0) :
      theorem Complex.norm_le_norm_two_mul_sub_of_re_le {M : } {x : } (Mpos : 0 < M) (hyp_re_x : x.re M) :
      x 2 * M - x
      theorem AnalyticOn.norm_le_of_norm_le_on_sphere {f : } {C R r : } (analytic : AnalyticOn f (Metric.closedBall 0 R)) (hyp_r : r R) (cond : zMetric.sphere 0 r, f z C) (w : ) (wInS : w Metric.closedBall 0 r) :
      f w C
      theorem borelCaratheodory_closedBall {M R r : } {z : } {f : } (Rpos : 0 < R) (analytic : AnalyticOn f (Metric.closedBall 0 R)) (zeroAtZero : f 0 = 0) (Mpos : 0 < M) (realPartBounded : zMetric.closedBall 0 R, (f z).re M) (hyp_r : r < R) (hyp_z : z Metric.closedBall 0 r) :
      f z 2 * M * r / (R - r)